
A Collaborative Monitoring Mechanism for
Making a Multitenant Platform Accountable

Chen Wang

CSIRO ICT Centre

Australia

chen.wang@csiro.au

Ying Zhou

The University of Sydney

Australia

ying.zhou@sydney.edu.au

Service Level Agreement (SLA)

•  Service providers often offer Service Level Agreements
as a means to address uncertainty

•  Attempt to meet certain QoS metrics

•  Current status:
•  Only support very limited metrics

•  Not machine processable

•  Few means are provided to clients to make a SLA
accountable when problems occur

•  Monitoring is provided by the service provider itself

• Clients are often required to furnish evidence all by
themselves to be eligible to claim credit for a SLA
violation

•  Existing application design practice does not take into account
of evidence collection functionalities for credit claiming purpose

Maintain the Data State in an External
Accountability Service

•  The accountability service maintains a view of the data
state

•  Reflects what data should be from users’ perspective

•  Aggregates data updating requests of users to calculate the
data state

•  Authenticates query results based on the calculated data state

•  Using Merkle B-tree[SIGMOD’06] for Data State Calculation

•  A combination of Merkle (hash) tree and B+-tree

Conclusions

•  Accountability is one of the foundations that form
realworld trust relationships.

•  The capability of identifying a party that is responsible when
things go wrong with evidences can potentially enhance the
trustworthiness of a system.

•  Accountability support is important to the cloud
computing ecosystem

•  Proper disclosure of important state transition logic of cloud
services

•  External parties are capable of verifying the evidence that
support these state transitions

Their slides

Cloud Services

•  User data and applications are in a trend of moving to the cloud
•  Running on rented infrastructures (IaaS)

•  Using third party provisioned platform (PaaS) and software (SaaS)

•  Business logic is executed in different administrative domains on a pay-
as-you-go basis

•  Cloud service architecture sample:force.com

Cloud Service Uncertainty

•  Performance variation is high

•  Correctness of business logic
•  Data service providers in clouds often trade consistency for

scalability.
•  Yahoo! PNUTS, Amazon SimpleDB consistency option

•  How can an application be sure that its query results satisfy its
consistency constraint?

•  How to ensure the business logic is handled correctly?

Service Level Agreement (SLA)

•  Service providers often offer Service Level Agreements as a
means to address uncertainty

•  Attempt to meet certain QoS metrics

•  Current status:
•  Only support very limited metrics

•  Not machine processable

•  Few means are provided to clients to make a SLA
accountable when problems occur

•  Monitoring is provided by the service provider itself

• Clients are often required to furnish evidence all by
themselves to be eligible to claim credit for a SLA violation

•  Existing application design practice does not take into account
of evidence collection functionalities for credit claiming purpose

A Sample Service Level Agreement
(Amazon EC2)

How is the problem tackled in realworld?

•  The use of a trusted third party to make a deal

•  The use of legal/social systems
•  Contract law provides incentives that promote good behaviour

between parties

•  Using these principles to make services accountable
•  Disclosing important state transition logic inside a service

•  Collecting and managing evidence based on a given SLA

•  Runtime compliance check and problem detection

Accountability

“Accountability is the ability to hold an entity, such as a person
or organization, responsible for its actions.”
 Butler Lampson:“Accountability and Freedom”, 2005

“People think that security in the real world is based on locks.
In fact, realworld security depends mainly on deterrence,
and hence on the possibility of punishment.”

Butler Lampson: “Privacy and security - Usable security: how to get
it.” CACM 52(11), 2009

Accountability as a Service: the Conceptual
Model

Tenant Service

Witness

Disclosure
Document

SLA

Monitor /
Anomaly Detector

System Architecture

•  A client has a set of applications running on shared data.

•  These applications provide a set of endpoints.

•  The SLA defines the following:
•  The data can only be accessed through these endpoints.

•  An endpoint is well-defined (the data state transition it may
trigger is specified and deterministic).

Wrapper:
capturing I/O of

the endpoint
Wrapper:

extracting/shipping
evidence

Maintain the Data State in an External
Accountability Service

•  The accountability service maintains a view of the data state
•  Reflects what data should be from users’ perspective

•  Aggregates data updating requests of users to calculate the
data state

•  Authenticates query results based on the calculated data state

•  Using Merkle B-tree[SIGMOD’06] for Data State Calculation

•  A combination of Merkle (hash) tree and B+-tree

Consistency Issue

•  The arrivals of request log entries to the accountability
service (W) may be out of order

•  Solution: bind the update to the actual data and the view of
state in W in a transaction performance issue; negative
impact of tightly coupling the actual service to W.

•  Trade accuracy of problem detection with performance and
decoupling.

•  Using a sliding window to sort out of order log entries
•  Eventual consistency between W and the cloud service it

monitors

Replicate Data State among Multiple
Accountability Services

Trustworthiness can be better achieved through the separation of
responsibility.

The data state of a multitenant database is maintained by a set of
data state services.

Each service maintains a view of the data state

The Organization of Multiple Accountability
Services: Design Choices

•  An update log entry is sent to any known state keeper and
propagate to other state keepers in a synchronous manner

•  Strong consistency among data keepers

•  Poor logging performance

•  An update log entry is sent to any known state keeper and
propagate to other state keepers in an asynchronous
manner

•  Weak consistency among data keepers
•  No guarantee that the answer to an authentication request will

reflect the recent data state change

•  Good logging performance

The Organization of Multiple Accountability
Services: A Hybrid Approach

•  Partition the whole range of the indexed attribute into a few
non-overlapped regions

•  Each region is mapped to one or more state keepers.

•  An update to a key falling into certain region will be logged in
the state keepers that are responsible for the region
synchronously

•  The update is propagated to state keepers that are not
responsible for the region asynchronously

•  An authentication request is directed to a data keeper
whose region overlaps most with the request data range

•  If the region covers the data range, authenticate the request
immediately

•  Otherwise, wait for an allowable delay window for the update
logs from other involved region to arrive

Evaluation

•  Settings
•  A data management service

•  Contains Web service interfaces that map business logic into DB
operations: inserts, point queries, and range queries.

•  gSOAP + MySQL

•  An accountability service

•  A few database clients

•  Each Party runs on an Amazon EC2 small instance (Linux
version 2.6.21.7-2.fc8xen)

•  Dataset
•  “Census Income” dataset from the UCI Machine Learning

Repository

•  Indexed column is “fnlwgt”

Evaluation (cont)

65 - 70% overhead of the total transaction time of a point query/insert (in
synchronous mode)

The overhead is related to the result set size for range queries

The overhead can be reduced through asynchronous logging

Impact of Multiple Accountability Services
on Authentication Time

•  Performance gap between accountability and normal service
•  An accountability service faces scalability issue

•  Maintaining a certain number of accountability services can
reduce the performance loss

Conclusions

•  Accountability is one of the foundations that form realworld
trust relationships.

•  The capability of identifying a party that is responsible when
things go wrong with evidences can potentially enhance the
trustworthiness of a system.

•  Accountability support is important to the cloud computing
ecosystem

•  Proper disclosure of important state transition logic of cloud
services

•  External parties are capable of verifying the evidence that
support these state transitions

