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Cloud datacenters: Benefits and obstacles 

  Moving to the cloud has manageability, costs & elasticity benefits 
  Selfish tenants can monopolize resources 
  Compromised & malicious tenants can degrade system performance 

  Problems already occur 

Spammers on AWS 
Bitbucket DoS attack 

Runaway client overloads storage 



Goals 

Existing mechanisms are insufficient for cloud 

  Isolate tenants to avoid collateral damage 
  Control each tenant’s share of network 
  Utilize all network capacity 

  Constraints 
 Cannot trust tenant code 
 Minimize network reconfiguration during VM churn 
 Minimize end host and network cost 
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  In-network queuing and rate limiting 

  Network-to-source congestion control (Ethernet QCN) 

  End-to-end congestion control (TCP) 
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Existing mechanisms are insufficient 

Detect 
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Not scalable. Can underutilize links. 

Requires new hardware. Inflexible policy. 

Poor control over allocation. Guests can change TCP stack. 



Seawall = Congestion controlled, 
hypervisor-to-hypervisor tunnels 

Benefits 
  Scales to # of tenants, flows, and churn 
  Don’t need to trust tenant 

  Works on commodity hardware 
  Utilizes network links efficiently 
  Achieves good performance 

(1 Gb/s line rate & low CPU overhead) 
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Components of Seawall 

Hypervisor kernel 

Guest Guest  Root   

  Seawall rate controller allocates network resources for each 
output flow 
 Goal: achieve utilization and division 

  Seawall ports enforce decisions of rate controller 
  Lie on forwarding path 
 One per VM source/destination pair 

SW-port 

SW-port 

SW-rate controller 



SW-port 

Seawall port 
  Rate limit transmit traffic 
  Rewrite and monitor traffic to support congestion control 
  Exchanges congestion feedback and rate info with controller 

Congestion 
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Rate controller: 
Operation and control loop 

  Algorithm divides network proportional to weights & is max/min fair 
  Efficiency: AIMD with faster increase 

  Traffic-agnostic allocation:  
Per-link share is same regardless of # of flows & destinations 

Source 

Reduce rate 
SW-rate controller 

SW-port 

Dest SW-rate controller 

SW-port 

Congestion info 
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  Rate controller adjusts rate limit based on presence and absence of loss 

Got 1,2,4 Congestion feedback 



VM 1 VM 2 VM 3 (weight = 2) 

VM 2 flow 1 

VM 2 flow 2 VM 2 flow 3 
VM 3: 
~50% 

VM 2: 
~25% 

VM 1: 
~25% 



Improving SW-port performance 
  How to add congestion control header to packets? 
  Naïve approach: Use encapsulation, but poses problems 

 More code in SW-Port 
  Breaks hardware optimizations that depend on header format 

  Packet ACLs: Filter on TCP 5-tuple 
  Segmentation offload: Parse TCP header to split packets 
  Load balancing: Hash on TCP 5-tuple to spray packets (e.g. RSS) 

Encapsulation 



“Bit stealing” solution: 
Use spare bits from existing headers 
  Constraints on header modifications 

 Network can route & process packet 
 Receiver can reconstruct for guest 

  Other protocols: might need paravirtualization. 
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“Bit stealing” solution: 
Performance improvement 

Encapsulation Bit stealing 

  Throughput: 280 Mb/s => 843 Mb/s 



Supporting future networks 
  Hypervisor vSwitch scales to 1 Gbps, but may be bottleneck for 

10 Gbps 
  Multiple approaches to scale to 10 Gbps 

 Hypervisor & multi-core optimizations 
  Bypass hypervisor with direct I/O (e.g. SR-IOV) 
 Virtualization-aware physical switch (e.g. NIV, VEPA) 

  While efficient, currently direct I/O loses policy control 
  Future SR-IOV NICs support classifiers, filters, rate limiters 
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Summary 
  Without performance isolation, no protection in cloud against 

selfish, compromised & malicious tenants 
  Hypervisor rate limiters + end-to-end rate controller provide 

isolation, control, and efficiency 
  Prototype achieves performance and security on commodity 

hardware 



Preserving performance isolation after 
hypervisor compromise 

  Compromised hypervisor at source can flood network 
  Solution: 

Use network filtering to isolate sources that violate congestion control 
 Destinations act as detector 
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  Pitfall: If destination is compromised, danger of DoS from 
false accusations 

  Refinement: Apply least privilege (i.e. fine-grained filtering) 
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Preserving performance isolation after 
hypervisor compromise 


