
Alan Shieh
Cornell University

Srikanth Kandula
Albert Greenberg
Changhoon Kim
Microsoft Research

Seawall: Performance Isolation for Cloud
Datacenter Networks

Cloud datacenters: Benefits and obstacles

  Moving to the cloud has manageability, costs & elasticity benefits
  Selfish tenants can monopolize resources
  Compromised & malicious tenants can degrade system performance

  Problems already occur

Spammers on AWS
Bitbucket DoS attack

Runaway client overloads storage

Goals

Existing mechanisms are insufficient for cloud

  Isolate tenants to avoid collateral damage
  Control each tenant’s share of network
  Utilize all network capacity

  Constraints
 Cannot trust tenant code
 Minimize network reconfiguration during VM churn
 Minimize end host and network cost

  In-network queuing and rate limiting
Existing mechanisms are insufficient

HV

Guest
HV

Guest
Not scalable. Can underutilize links.

Existing mechanisms are insufficient
  In-network queuing and rate limiting

  Network-to-source congestion control (Ethernet QCN)

HV

Guest
HV

Guest

Throttle send rate

Detect
congestion

HV

Guest
HV

Guest
Not scalable. Can underutilize links.

Requires new hardware. Inflexible policy.

  In-network queuing and rate limiting

  Network-to-source congestion control (Ethernet QCN)

  End-to-end congestion control (TCP)

HV

Guest
HV

Guest

HV

Guest
HV

Guest

HV

Guest

HV

Guest

Throttle send rate

Existing mechanisms are insufficient

Detect
congestion

Not scalable. Can underutilize links.

Requires new hardware. Inflexible policy.

Poor control over allocation. Guests can change TCP stack.

Seawall = Congestion controlled,
hypervisor-to-hypervisor tunnels

Benefits
  Scales to # of tenants, flows, and churn
  Don’t need to trust tenant

  Works on commodity hardware
  Utilizes network links efficiently
  Achieves good performance

(1 Gb/s line rate & low CPU overhead)

HV

Guest

HV

Guest

Components of Seawall

Hypervisor kernel

Guest Guest Root

  Seawall rate controller allocates network resources for each
output flow
 Goal: achieve utilization and division

  Seawall ports enforce decisions of rate controller
  Lie on forwarding path
 One per VM source/destination pair

SW-port

SW-port

SW-rate controller

SW-port

Seawall port
  Rate limit transmit traffic
  Rewrite and monitor traffic to support congestion control
  Exchanges congestion feedback and rate info with controller

Congestion
detector

Guest
Inspect
packets

Tx
Rate limiter

Rewrite
packets

New rate

SW-rate controller

Congestion info

Rate controller:
Operation and control loop

  Algorithm divides network proportional to weights & is max/min fair
  Efficiency: AIMD with faster increase

  Traffic-agnostic allocation:
Per-link share is same regardless of # of flows & destinations

Source

Reduce rate
SW-rate controller

SW-port

Dest SW-rate controller

SW-port

Congestion info

1 4 2 3

X

1,2,4

  Rate controller adjusts rate limit based on presence and absence of loss

Got 1,2,4 Congestion feedback

VM 1 VM 2 VM 3 (weight = 2)

VM 2 flow 1

VM 2 flow 2 VM 2 flow 3
VM 3:
~50%

VM 2:
~25%

VM 1:
~25%

Improving SW-port performance
  How to add congestion control header to packets?
  Naïve approach: Use encapsulation, but poses problems

 More code in SW-Port
  Breaks hardware optimizations that depend on header format

  Packet ACLs: Filter on TCP 5-tuple
  Segmentation offload: Parse TCP header to split packets
  Load balancing: Hash on TCP 5-tuple to spray packets (e.g. RSS)

Encapsulation

“Bit stealing” solution:
Use spare bits from existing headers
  Constraints on header modifications

 Network can route & process packet
 Receiver can reconstruct for guest

  Other protocols: might need paravirtualization.

IP IP-ID

TCP Timestamp option

0x08 0x0a TSval TSecr Seq #

#
 p

ac
ke

ts

Se
q

#

Constant

Unused

“Bit stealing” solution:
Performance improvement

Encapsulation Bit stealing

 Throughput: 280 Mb/s => 843 Mb/s

Supporting future networks
  Hypervisor vSwitch scales to 1 Gbps, but may be bottleneck for

10 Gbps
  Multiple approaches to scale to 10 Gbps

 Hypervisor & multi-core optimizations
  Bypass hypervisor with direct I/O (e.g. SR-IOV)
 Virtualization-aware physical switch (e.g. NIV, VEPA)

  While efficient, currently direct I/O loses policy control
  Future SR-IOV NICs support classifiers, filters, rate limiters

SW-port
Congestion detector

Guest

Tx
Rate limiter

Inspect packets

Rewrite packets

SW-rate controller

Guest

I/
O

 v
ia

 H
V

SW-port
Congestion detector DRR

Tx counter

Rx counter

D
ir

ec
t I

/O

Summary
  Without performance isolation, no protection in cloud against

selfish, compromised & malicious tenants
  Hypervisor rate limiters + end-to-end rate controller provide

isolation, control, and efficiency
  Prototype achieves performance and security on commodity

hardware

Preserving performance isolation after
hypervisor compromise

  Compromised hypervisor at source can flood network
  Solution:

Use network filtering to isolate sources that violate congestion control
 Destinations act as detector

BAD

SW enforcer

X

Isolate

is bad

  Pitfall: If destination is compromised, danger of DoS from
false accusations

  Refinement: Apply least privilege (i.e. fine-grained filtering)

SW enforcer

X

Isolate

is bad

BAD

Drop

Preserving performance isolation after
hypervisor compromise

