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Abstract— Multi-level cache hierarchies have become very
common; however, most cache management policies result in
duplicating the same data redundantly on multiple levels. The
state-of-the-art exclusive caching techniques used to mitigate
this wastage in multi-level cache hierarchies are the DEMOTE
technique and its variants. While these achieve good hit ratios,
they suffer from significant I/O and computational overheads,
making them unsuitable for deployment in real-life systems.

We propose a dramatically better performing alternative
called PROMOTE, which provides exclusive caching in multi-
level cache hierarchies without demotions or any of the
overheads inherent in DEMOTE. PROMOTE uses an adaptive
probabilistic filtering technique to decide which pages to
“promote” to caches closer to the application. While both
DEMOTE and PROMOTE provide the same aggregate hit ratios,
PROMOTE achieves more hits in the highest cache levels
leading to better response times. When inter-cache bandwidth
is limited, PROMOTE convincingly outperforms DEMOTE by
being 2x more efficient in bandwidth usage. For example,
in a trace from a real-life scenario, PROMOTE provided an
average response time of 3.42ms as compared to 5.05ms for
DEMOTE on a two-level hierarchy of LRU caches, and 5.93ms
as compared to 7.57ms on a three-level cache hierarchy.

We also discover theoretical bounds for optimal multi-level
cache performance. We devise two offline policies, called
OPT-UB and OPT-LB, that provably serve as upper and
lower bounds on the theoretically optimal performance of
multi-level cache hierarchies. For a series of experiments on
a wide gamut of traces and cache sizes OPT-UB and OPT-
LB ran within 2.18% and 2.83% of each other for two-cache
and three-cache hierarchies, respectively. These close bounds
will help evaluate algorithms and guide future improvements
in the field of multi-level caching.

I. INTRODUCTION

Very rarely does data reach its consumer without
traveling through a cache. The performance benefit of a
cache is significant, and even though caches are much
more expensive than mass storage media like disks,
nearly all data servers, web servers, databases, and
in fact most computing devices are equipped with a
cache. In the last several decades numerous read caching
algorithms have been devised (for example, LRU[10],
CLOCK[8], FBR[29], 2Q[20], LRFU[21], LIRS[18],
MQ[36], ARC[25] and SARC[14]). Most of the work,
however, has focused on the case when a single sig-
nificant layer of cache separates the data producer and
the data consumer. In practice, however, data travels

through multiple layers of cache before reaching an
application. It has been observed that single-level cache
replacement policies perform very poorly when used in
multi-level caches [26].

We propose a simple and universal probabilistic
technique, called PROMOTE, that adapts any single-
level read caching algorithm into an algorithm that
allows a multi-level read cache hierarchy to perform as
effectively as a single cache of the aggregate size. Un-
like previous algorithms, this novel algorithm imposes
negligible computational and I/O overheads. As another
key contribution to the field of multi-level caching, we
provide, for the first time, techniques to compute very
close bounds for the notoriously elusive offline optimal
performance of multi-level caches.

A. The Problem with Inclusion

One of the earliest examples of multi-level caches
arose in the context of a processor [30], [28]. The
multiple layers of cache were named L1, L2, L3, etc.,
with L1 (highest cache) being the closest to the pro-
cessor, the smallest in size, and the fastest in response
time. For efficient cache coherency, systems enforced
the inclusion property [1], which mandated that the
higher caches be a subset of the lower caches. Other
than in cases where L2 was only marginally larger than
L1 [22], the performance penalty of this redundancy of
content between the layers was not of much concern.

In stark contrast, in the hierarchy of caches formed
by multiple computing systems connected to each other,
inclusion, sometimes partial, is not by design and has
been found to be detrimental to performance [26], [13].
The redundancy of data between the cache levels is
most severe when the caches are of comparable sizes.
A request is always serviced from the closest cache to
the client that has the data, while further copies of the
data in lower caches are not useful.

B. Working towards Exclusion

In cache hierarchies through which pages traverse
fixed paths from the data source to the application,
exclusivity of all caches is highly desirable. In multi-
path cache hierarchies, where pages can get accessed via
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Fig. 1. Cache hierarchies that benefit from exclusive caching.

multiple paths, exclusive caching should be applied to
those portions of the cache hierarchy which do not have
a large workload overlap between the various paths.

Figure 1 shows a common scenario for which various
exclusive caching algorithms have been proposed ([36],
[33], [19], [12]). It is fairly common to find cache
hierarchies formed by a first level of application servers
(database servers, web proxy servers, web content de-
livery servers, storage virtualization servers) which act
as clients for backend storage servers, while both are
equipped with significant and comparable caches [33].
In some cases, it may also be possible to include the end
clients to form an exclusive cache hierarchy of three or
more levels of cache.

A naı̈ve way of enforcing the exclusion property
would be to associate different caches with different
logical addresses. Obviously, this will not be able to
gather frequently hit pages in the topmost caches and
the average response time for some workloads might
end up worse than the case when the caches are not
exclusive at all. Succinctly, the challenge of multi-level
exclusive caching is: “Exclusivity achieved efficiently
with most hits at the highest cache levels”.

C. Exclusivity via Smart Lower Caches

It has been known that the Least Frequently Used
([13], [32]) algorithm performs better at second-level
caches that the traditional LRU algorithm. A more
sophisticated second-level cache management algorithm
is the MQ algorithm [36] which maintains multiple lists
geared to capture frequently accessed pages with long
reuse intervals. However, it is not studied for more than
two levels of cache and also cannot achieve complete
exclusivity of the caches where desirable.

A more recent algorithm, X-RAY [2], constructs in
the RAID controller cache an approximate image of the
contents of the filesystem cache by monitoring the meta-
data updates, which allows for better cache replacement
decisions and exclusivity. Such gray-box approaches,

however, are domain-specific and not easily applicable
to more than two levels of cache.

A similar approach is to use a Client Cache Tracking
(CCT) table [6] in the lower cache to simulate the
contents of the higher cache. This allows the lower
cache to proactively reload the evicted pages from the
storage media. The extra cost of these requests, however,
may overburden the storage media resulting in high read
response times.

D. Exclusivity via Smart Higher Caches

Chen et al. [7] propose an algorithm called ACCA

in which a client (higher cache) simulates the contents
of the server (lower cache), and uses that knowledge to
preferably evict those pages which are also present in
the server. This is difficult to do in multi-client scenarios
or where the server behavior is complex or proprietary.

E. Exclusivity via Multi-level Collaboration

When multiple layers of cache can be modified to
communicate with each other, most of the guesswork of
simulating cache contents can be avoided. Even though
extensions are required to the communication protocol,
this class has proven to be the most promising in terms
of performance and ease of implementation.

1) Application controlled: The Unified and Level-
aware Caching (ULC) algorithm [19] controls a cache
hierarchy from the highest level by issuing RETRIEVE

and DEMOTE commands to lower caches causing them
to move blocks up and down the hierarchy, respectively.
The highest cache level (application client) has to keep
track of the contents of all the caches below, which
entails complexity in the client’s implementation.

2) Application hints: KARMA [12] is aimed at ap-
plications such as databases that can provide hints for
placement decisions in all cache levels. Such solutions
are application-specific and do not lend themselves to
general applicability in multi-level caches. This brings
us to DEMOTE, which is the most popular general-
purpose collaborative multi-level caching technique.

F. The DEMOTE Technique

The DEMOTE technique [33], or equivalently the
Global technique [35], shown in Figure 2, can be
applied to many general purpose single-level caching
policies (like, LRU, MQ, ARC, etc) to create multi-
level versions that achieve exclusivity of cache contents.
As with any exclusive caching scheme, DEMOTE should
only be used in scenarios that benefit from exclusive
caching [33], [27].

G. The Problems with DEMOTE

While the DEMOTE technique strives to improve
the aggregate hit ratio over the non-exclusive variant,
the overall performance might in fact suffer because
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Fig. 2. The DEMOTE technique. When a client is about to eject a
clean block from its cache, it sends the clean block to the lower cache
using the DEMOTE operation. The lower cache puts the demoted block
into its cache, ejecting another block if necessary to make space. Hits
in any list are sent to the MRU end of the appropriate highest cache.

of the cost of the DEMOTE operation, including: (i)
network traffic to send evicted pages to lower caches,
and (ii) processor cycles consumed to prepare, send and
receive demoted pages. This has thwarted the practical
deployment of DEMOTE in real systems.

In cases where inter-cache bandwidth is tight, or
the workload throughput is high, the average response
time suffers in spite of a higher hit ratio. This happens
as reads stall until demotions (sometimes in multiple
levels) can create space for the new page. Further, an
eviction, which used to be a trivial operation, now
becomes an expensive operation almost equivalent to
a write request to the lower cache. This leads to further
degradation of performance. Add to this the concern that
for workloads that do not exhibit temporal locality, like
purely sequential (or purely random), all demotions are
futile and we end up wasting critical network resources
when most needed.

Eviction-based cache replacement [6] was proposed
to alleviate the network bandwidth wastage. A list of
evicted pages is sent periodically to the lower cache
which reloads them from the disks into its cache. We
have observed for many real systems and benchmarks
these extra reads increase the average miss penalty,
diminishing or defeating the benefits of any increase in
hit ratio that such exclusive caching can provide. There
have been other attempts to partially mitigate the cost
of demotions [34] or the cost of the extra I/Os on the
disks [6] by grouping them and using ‘idle time’. In
our opinion, idle time should never be considered free
as it can be used by other algorithms like prefetching
to improve read performance. Sophisticated enterprise-
class systems which run round the clock strive hard to
minimize idle-time. ULC and KARMA do reduce the
number of low reuse pages that enter the higher caches
and thereby minimizing the bandwidth wastage. How-
ever, ULC’s complexity and KARMA’s dependence on
application hints make them less generally applicable.

H. Our Contributions

We present two major results:
Bounds for Optimal Performance: In the study

of caching algorithms, it is invaluable to know the
offline optimal performance that a multi-level cache can
deliver. While Belady’s MIN [4] (an offline algorithm)
is considered optimal for single-level caches, it cannot
be applied to multi-level cache scenarios, where, apart
from the hit ratio, the location of hits is also extremely
important. Our first contribution provides insight into
the optimal offline performance of multi-level caches.

We provide policies called OPT-UB and OPT-LB
that provably serve as upper and lower bounds for the
optimal offline performance for multi-level caches along
both average response time and inter-cache bandwidth
usage metrics.

Through a series of experiments on a wide gamut of
traces, cache sizes and configurations, we demonstrate
that OPT-UB and OPT-LB are very close bounds
on the optimal average response time, running on an
average, within 2.18% and 2.83% of each other for
all the tested two-cache and three-cache hierarchies,
respectively. Even for more complex hierarchies, the
bounds remain close at about 10% of each other. This
novel result enables us to estimate for the first time,
the performance gap between the current state-of-the-
art algorithms and the offline optimal for multi-level
caches.

PROMOTE Technique: As another fundamental con-
tribution to the field of caching, we propose a sim-
ple and significantly better alternative to the DEMOTE

technique, called PROMOTE, which provides exclusive
caching without demotions, application hints, or any of
the overheads inherent in DEMOTE. PROMOTE uses a
probabilistic filtering technique to “promote” pages to
higher caches on a read. Not only do we show that
PROMOTE is applicable to a wider range of algorithms
and cache hierarchies, it is on an average, 2x more
efficient than DEMOTE requiring only half the inter-
cache bandwidth between the various cache levels.

In a wide variety of experiments, while both tech-
niques achieved the same aggregate hit ratio, PROMOTE

provided 13.0% and 37.5% more hits in the highest
cache than DEMOTE when the techniques were applied
to LRU and ARC [25] algorithms, respectively, leading
to better average response times even when we al-
low DEMOTE unlimited inter-cache bandwidth and free
demotions. In limited bandwidth scenarios, PROMOTE

convincingly outperforms DEMOTE. For example, in a
trace from a real-life scenario, PROMOTE provided an
average response time of 3.21ms as compared to 5.43ms
for DEMOTE on a two-level hierarchy of ARC caches,
and 5.61ms as compared to 8.04ms on a three-level
cache hierarchy.
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Fig. 3. A multi-level single-path cache hierarchy.

A. Quest for Offline Optimality

The offline optimal performance, which is the best
possible performance given full knowledge of the future
requests, is a critical guide for cache algorithm devel-
opment. The offline optimal algorithm for single-level
caches is the classic Belady’s MIN or OPT [4] which
simply evicts the page with the furthest re-reference
time. For four decades, the quest for a similar algorithm
for multi-level caches has remained unfulfilled. Hit
ratio, the performance metric that served us so well in
single-level caches, loses its fidelity to performance in
multi-level caches, where the benefit of a hit depends
on which level it occurred in (e.g. two hits on a higher
cache could be better than three hits on a lower cache.)

The average read response time is a much better per-
formance metric, but is complicated in the presence of
demotions and/or eviction-based reloading from disks.
The inter-cache bandwidth usage is another important
metric since many scenarios are bottle-necked by net-
work resources [33]. It does appear that different poli-
cies would be optimal depending on which performance
metric we use.

We now prove universal bounds for the single-path
scenario as depicted in Figure 3 that simultaneously
apply to both the average response time and inter-cache
bandwidth metrics. The bounds apply to all algorithms
irrespective of whether demotions, inclusion, or hints
are used. Later, we explain extensions to compute the
bounds for the multi-path scenarios as well.

Ci Cache at level i, i = 1, 2, ..., n
Si Size of the cache Ci

hi Number of hits at Ci

ti Avg. round-trip response time from Ci

tm Avg. round-trip response time from disks
σi Sequence of reads seen by Ci

σm Sequence of reads (misses) seen by disks
Dci→ci+1

Number of demotions from Ci to Ci+1

From Figure 3 and definitions above, the total re-
sponse time is

totalRespT ime =

n∑

i=1

hi · ti + |σm| · tm (1)

and the inter-cache traffic between caches Ci and Ci+1

is

interCacheT rafci→ci+1
= |σi+1| + |Dci→ci+1

| (2)

We define hitOPT (σ, S) to be the number of hits
produced by Belady’s offline OPT policy on the request
sequence σ and a single-level cache of size S.

B. Optimal Upper Bound: OPT-UB

We define a conceptual policy OPT-UB that serves as
an upper bound on performance, implying that no policy
can perform better than this bound in terms of either
average response time or inter-cache bandwidth usage
by achieving better (lower) values for either metric.
OPT-UB is a bound, not on the performance of a
particular cache, but on the aggregate performance of
the cache hierarchy.

Let OPT-UB be a policy that for a request sequence
σ, exhibits for each cache Ci, hi number of hits, while
requiring no demotions or reloads from disks, where,

hi = hitOPT (σ,

i∑

j=1

Sj) − hitOPT (σ,

i−1∑

j=1

Sj) (3)

Note that we intend to compute a theoretical upper
bound which is necessarily achievable.

Lemma II.1 No policy can have more hits, up to any
cache level, than OPT-UB. More precisely, OPT-UB
maximizes

∑k

i=1 hk, ∀k ≤ n.

Proof: By Eqn. 3 the aggregate hits for the set of
caches C1, .., Ck is

aggrHitsk =

k∑

i=1

hi = hitOPT (σ,

k∑

i=1

Si) (4)

By the definition of hitOPT , this is the same as that
obtained by Belady’s OPT on a cache of the aggregate
size. Since Belady’s OPT is known to deliver the
maximum possible hit ratio, aggrHitsk is maximized
for all k ≤ n.

Theorem II.1 No policy can have a lower total inter-
cache traffic than OPT-UB.

Proof: Inter-cache traffic is the sum of misses and
demotions between two adjacent caches (by Eqn. 2).
Since, OPT-UB is defined to have no demotions and
maximizes the aggregate hits at all levels of the cache
(Lemma II.1), no other policy can have lower inter-
cache traffic than OPT-UB.

Theorem II.2 No policy can have a lower average
response time than OPT-UB.
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Proof: We prove by contradiction. Let a better
performing policy achieve a lower average response
time (equivalently, lower total response time) for a
workload than OPT-UB, by providing h′

i hits at each
corresponding cache Ci, and m′ overall misses, as
compared to hi hits and m misses for OPT-UB.

∴

n∑

i=1

h′

i · ti + m′ · tm <

n∑

i=1

hi · ti + m · tm

⇒

n∑

i=1

h′

i · (ti − tm) + (m′ +

n∑

i=1

h′

i) · tm

<

n∑

i=1

hi · (ti − tm) + (m +

n∑

i=1

hi) · tm

⇒(a)

n∑

i=1

h′

i · (tm − ti) >
n∑

i=1

hi · (tm − ti)

⇒

n∑

i=1

h′

i · (tn − ti + tm − tn) >

n∑

i=1

hi · (tn − ti + tm − tn)

⇒(b)

n∑

i=1

h′

i · (tn − ti) >

n∑

i=1

hi · (tn − ti)

+ (

n∑

i=1

hi −

n∑

i=1

h′

i) · (tm − tn)

⇒(c)

n∑

i=1

h′

i · (tn − ti) >

n∑

i=1

hi · (tn − ti)

⇒(d)

n−1∑

i=1

h′

i · (tn − ti) >
n−1∑

i=1

hi · (tn − ti)

(a) follows as the sum of all hits and misses is the same
for both policies (|σ1|) and the second term on both
sides of the inequality can be removed. The second term
on the right hand side of (b) is non-negative because
tm > tn and by Lemma II.1, no policy can have more
aggregate hits (up to any cache level) than OPT-UB.
(c) follows by removing the non-negative second term
in inequality (b). (d) follows as the nth term in the
summation is zero. Note that between step (a) and step
(d), the superscript of the summation has dropped from
n to n − 1. Steps (a) through (d) can be repeated until
n = 2 (as, for all i, ti > t(i−1)). We will then arrive at
h′

1 · (t2 − t1) > h1 · (t2 − t1). As t2 > t1, it implies that
h′

1 > h1, which contradicts Lemma II.1, which states
that OPT-UB maximizes

∑k
i=1 hk, ∀k ≤ n (including

k = 1).

C. Optimal Lower Bound: OPT-LB

We now introduce a very simple and practical offline
algorithm called OPT-LB, which provides a very close

lower bound on optimal multi-level caching perfor-
mance. A better performing policy will have to demon-
strate either lower average response time or lower inter-
cache bandwidth usage. OPT-LB is the best known off-
line multi-level caching policy that we are aware of.

The basic idea is to apply Belady’s OPT algorithm
in a cascaded fashion. We start with the highest cache
level, C1, and apply OPT to the request sequence σ1,
assuming a single cache scenario. We note the misses
from C1 with their timestamps and prepare another
request sequence, σ2, for the lower cache C2. We repeat
the same process at C2, in turn generating σ3. This is
performed for each level and we keep a count of hits
obtained at every level.

In other words, hi = hitOPT (σi, Si) and σi+1 =
traceOPT (σi, Si), where traceOPT is a trace of the
misses when OPT is applied to the given request stream
and cache size.

Once each level has learned its σi, all cache levels can
operate together replicating the result in real-time. Since
this can be done practically, this policy by definition
serves as the lower bound for the offline optimal along
any performance metric. Note that OPT-LB does not re-
quire any demotions or reloads from disks. Even though
OPT-LB does not guarantee exclusivity of caches, we
experimentally confirm that OPT-LB is indeed a very
close lower bound for offline optimals for both average
response time and inter-cache bandwidth usage in multi-
level caches.

D. Bounds for Multi-path Hierarchies

It is simple to extend OPT-UB and OPT-LB for any
complex cache hierarchy. While it is fairly common
to accept the use of traces for multi-client caching
experiments ([33], [19]), the results are accurate only in
cases where the relative order of requests from various
clients can be assumed fixed. The same holds true for
OPT-UB and OPT-LB, which are valid bounds for
multi-path hierarchies if we can assume that the relative
order of requests from various clients is fixed. Note that
there is no such caveat in single client scenarios, where
trace-based analysis is accurate.

We extend OPT-UB as follows: we start with de-
termining the maximum hit ratio obtainable at each
cache at the highest level by applying Belady’s OPT.
Similarly, we determine the maximum aggregate hit
ratio obtainable in each two-level subtree starting at the
highest levels. We subtract the hit ratio of the highest
level caches to obtain the hit ratio for the second-level
caches. We do this until we have hit ratio values for
all cache levels, using which, we arrive at the OPT-
UB average response time value. This is a simple
generalization of the single-path approach.
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ADAPTING PROBPROMOTE:

float hintFreq = 0.05;

float sizeRatio =
P

k−1

i=1
Si/

P
k

i=1
Si; (at level k)

float probPromote = sizeRatio;
struct adaptHint {

time t life; // life of the cache
float occupancy;// fraction of cache occupied by T2

// -only required by PROMOTE-ARC
} higherHint; // hint from higher cache

Every cache.life ∗ hintFreq
1: Prepare and send adaptHint to lower cache

On receiving adaptHint h
2: higherHint = h;
3: Every alternate time (to observe the impact

of the previous adaptation): adjustIfNeeded();

adjustIfNeeded()
4: static float prev = 0;
5: float curr = adaptRatio(); /* algo-specific */
6: float f = (2 ∗ curr − 1); /* f = 0 is the target */
7: if ((f > 0 &&
8: prev − curr < hintFreq ∗ (prev − 0.5)) ||
9: (f < 0 &&
10: curr − prev < hintFreq ∗ (0.5 − prev)))
11: probPromote + =
12: (1 − probPromote) ∗ probPromote ∗ f ;
13: if (probPromote > sizeRatio)
14: probPromote = sizeRatio;
15: endif
16: endif
17: prev = curr;

shouldPromoteUpwards()
18: if (HighestCache ||
19: probPromote < randomBetween0and1())
20: return false;
21: endif
22: return true;

Fig. 4. The common methods used by PROMOTE to adapt
probPromote within every cache by leveraging the hint protocol.

We extend OPT-LB for multi-path hierarchies by
merging traces (according to timestamps) emerging
from higher caches before applying them to the lower
cache. We present a couple of illustrative examples
towards the end of the paper (Figures 14 and 15).

III. THE PROMOTE TECHNIQUE

The goal of the PROMOTE technique is to provide
exclusive caching that performs better than DEMOTE,
while at the same time, requires no demotions, reloads
from disks, or any computationally intense operation.
Each cache independently and probabilistically decides
whether to keep the data exclusively as it is passed along
to the application. The probability of holding the data
or promoting the data upwards is adaptively determined.

PROMOTE-LRU:

adaptRatio() /* return a value between 0 and 1 */
23: return higherHint.life /(cache.life + higherHint.life)

On receiving from higher cache (readReq addr)
24: page p = lookupCache(addr);
25: if (p) /* hit */
26: promoteHint = shouldPromoteUpwards();
27: if (promoteHint)
28: remove page p from cache
29: endif
30: send to higher cache (p, promoteHint)
31: else /* miss */
32: send to lower cache (addr)
33: endif

On receiving from lower cache (page p, bool promoteHint)
34: if (promoteHint)
35: promoteHint = shouldPromoteUpwards();
36: if (!promoteHint)
37: create page p in cache
38: endif
39: endif
40: send to higher cache (p, promoteHint)

PROMOTE-ARC:

adaptRatio() /* returns a value between 0 and 1 */
41: float higher = higherHint.occupancy/higherHint.life;
42: float self = T2.occupancy/T2.life;
43: return self/(self + higher);

On receiving from higher cache (readReq addr, bool T2hint)
44: page p = lookupCache(addr);
45: if (p || addr found in history)
46: T2hint = true;
47: remove addr from history (if present)
48: endif
49: if (p) /* hit */
50: promoteHint = shouldPromoteUpwards();
51: if (promoteHint)
52: remove page p from cache
53: endif
54: send to higher cache (p, promoteHint, T2hint)
55: else /* miss */
56: send to lower cache (addr, T2hint)
57: endif

On receiving from lower cache (page p,
bool promoteHint, bool T2hint)

58: if (promoteHint)
59: promoteHint = shouldPromoteUpwards();
60: if (!promoteHint)
61: if (T2hint)
62: create page p in T2

63: else
64: create page p in T1

65: endif
66: endif
67: endif
68: send to higher cache (p, promoteHint, T2hint)

Fig. 5. The PROMOTE augmentations to ARC and LRU algorithms.
These enhancements are apart from the regular mechanisms (not
shown) inherent in these algorithms.
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We present the PROMOTE algorithm in Figures 4 and 5.

A. Achieving Exclusivity

The PROMOTE technique ensures that only one cache
claims ownership of a page on its way to the client. On
subsequent accesses to the page, the page can either
stay in the same cache or be promoted upwards. As in
DEMOTE, only when a page is accessed via different
paths in a multi-path hierarchy can a page appear
in multiple locations (which is better than enforcing
absolute exclusivity).

B. Using promoteHint with a READ Reply

While DEMOTE uses an additional bandwidth-
intensive operation (DEMOTE: similar to a page WRITE),
PROMOTE uses a boolean bit, called promoteHint,
that is passed along with every READ reply, and helps
to decide which cache should own the page. The
promoteHint is set to true when a READ reply is
first formed (cache hit or disk read) and set to false
in the READ reply when some cache decides to keep
(own) it. A READ reply with a false promoteHint
implies that a lower cache has already decided to own
the page and the page should not be cached at the
higher levels. When a cache receives a READ reply
with a true promoteHint, the cache gets to decide
whether to keep (own) the page locally or “promote”
it upwards. At each cache level PROMOTE maintains a
separate probPromote value, which is the probability
with which that cache will promote a page upwards. If a
cache decides to own the page (Lines 18-22), it changes
the promoteHint to false in the reply and maintains a
copy of the page locally. In all other cases, a READ

reply is simply forwarded to the higher cache with the
promoteHint value unchanged, and any local copy of
the data is deleted from the cache. The highest cache
has probPromote = 0, implying that it always owns
a page that it receives with a true promoteHint. A
page received with a false promoteHint, implying that
the page is already owned by a lower cache, is merely
discarded upon returning it to the application.

C. Promoting Hits Upwards

Pages that incur repeated hits in PROMOTE are highly
likely to migrate upwards in the hierarchy as they are
subjected repeatedly to the probPromote probability
of migrating upwards. The more the number of hits in-
curred by a page the more it can climb in the hierarchy.
The most hit pages soon begin to accumulate in the
topmost level.

Note that while DEMOTE uses inter-cache bandwidth
for pages on their way up towards the application and
also their way down, PROMOTE saves bandwidth by
moving pages only in one direction.

D. Adapting probPromote

Each cache maintains and adapts a separate
probPromote value. The reader will appreciate that the
lower the probPromote value at a cache, the lesser
is the rate at which new pages will enter the caches
above it. Thus, by changing the value of probPromote,
a lower cache can influence the influx rate of new
pages at the higher caches. The fundamental idea in the
PROMOTE technique is to use this leverage to create a
situation where the “usefulness” of pages evicted from
the various caches are roughly the same (if possible).
This is different from DEMOTE, where pages evicted
from the higher cache are more useful (and hence need
to be demoted) than the pages evicted from the lower
cache.

To facilitate the adaptation, PROMOTE requires a
very simple interface to periodically receive adaptation
information like the cache life (the timestamp difference
between the MRU and LRU pages in the cache) of
the next higher cache(s). At regular intervals, each
cache, other than the lowest, sends the hint to the next
lower cache (Lines 1-3), using which, the adaptRatio
is computed (Lines 23, 41-43). The goal is to adapt
probPromote in such a way that the adaptRatio
approaches 0.5 (a value that implies that the usefulness
of pages evicted from the higher cache is the same as
of those from the lower cache). If the higher cache
has a larger life (adaptRatio > 0.5), probPromote
is increased, else it is decreased. Since there is a lag
between the adaptation in probPromote and its impact
on the adaptRatio, the recomputation of probPromote
(Lines 4-17) is done only on alternate times the hint is
received (Line 3). Further, if the previous adaptation of
probPromote is found to have reduced the separation
of adaptRatio and 0.5 by a reasonable fraction (Lines
7-10), then no further adaptation is done. To avoid
any runaway adaptation, probPromote needs to be
carefully adapted so that the adaptation is proportional
to the difference between adaptRatio and 0.5 and also
is slower when close to extreme values of 0 and 1 (Lines
11-12). To start off in a fair fashion, probPromote is
initialized according to the sizes of the caches. Since
the higher caches usually demonstrate higher hit rates
than the lower caches, we forbid probPromote to go
beyond the ratio thus determined (Lines 13-14).

Let us examine some examples of PROMOTE in
existing cache management policies:

1) PROMOTE-LRU : As shown in Figure 6, LRU
is implemented at each cache level, augmented by
the PROMOTE protocol. The dynamic adaptation of
probPromote at each level, results in equalizing the
cache lives and it can be shown that the cache hierarchy
achieves a hit ratio equal to that of a single cache of
the aggregate size. The same is true, if instead of the
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Fig. 6. Communication protocols for the PROMOTE technique (left
panel) and the DEMOTE technique (right panel). Although shown
in the same diagram, either LRU or ARC data-structures are used
consistently across all levels.

cache lives we choose to equalize the marginal utility
of the caches. The marginal utility can be computed by
measuring the hit rate on a fixed number of pages in
the LRU ends of the caches [14]. To avoid the extra
complexity, we do not use the marginal utility approach
in this paper.

2) PROMOTE-ARC : First, we summarize the ARC
algorithm [25]: ARC maintains c pages in the cache
and c history pages. LRU list T1 contains pages that
have been seen only once recently, and T2 contains the
pages that have been seen at least twice recently. The
addresses of the pages recently evicted from T1 and T2

are stored in B1 and B2, respectively. |T1| + |T2| ≤
c is enforced, while the relative sizes of the lists are
adapted according to the relative rates of hits in the
corresponding history lists B1 and B2.

For simplicity, consider a single-path hierarchy of
ARC caches (Figure 6). Theoretically, the caches could
pass the marginal utility of the T1 and T2 lists to lower
caches which could dynamically adapt probPromote
at each cache level to equalize the utility across the
hierarchy. However, it can be challenging to adapt
probPromote in a stable way for both T1 and T2 lists
at each level. We found a simple policy that works
very well for ARC. For traffic destined for T1 lists,
probPromote at each cache Ck is set to a fixed value

∑k−1
i=1 |Ci|/

∑k

i=1 |Ci|. Instead of the cache life, the
life/occupancy of the T2 list is passed to lower caches,
where occupancy is the fraction of the cache occupied
by T2. Merely using the cache life for T2 list did not
fare well, compared to DEMOTE-ARC, in unlimited
bandwidth cases. The probPromote for the T2 lists
is dynamically adapted at each level so as to equalize
life/occupancy across the hierarchy (Lines 41-43).

Another hint called the T2hint is used along with
read requests and replies to indicate that the page should
be stored in a T2 list as it has been seen earlier (Line
46). If any cache decides to keep the page (Line 59), it
creates the page in T2 if T2hint is true; else it creates
it in T1.

E. Handling Multi-path Hierarchies

Since PROMOTE does not significantly alter the local
caching policy, extensions to multi-path hierarchies is
as simple as requiring that the caches with multiple
directly connected higher caches maintain a separate
probPromote value corresponding to each such higher
cache, and that hints be sent to all directly connected
lower caches. It may not always be possible to equalize
the cache lives or marginal utilities, however, merely
allowing the adaptation to attempt the equalization
results in better performance.

On the other hand, it is difficult to conceive a multi-
path version of DEMOTE in many cases (e.g. ARC
hierarchies in Figures 14 and 15). Hence, PROMOTE

is not only easier to apply to multi-level caches than
DEMOTE, it is also more broadly applicable.

IV. EXPERIMENTAL SET-UP

A. Traces

We use both synthetic and real-life scenario traces
that have been widely used for evaluating caching
algorithms.

P1-P14: These traces [25], [17] were collected over
several months from workstations running Windows NT
by using VTrace [23].

Financial1 and Financial2: These traces [16] were
collected by monitoring requests to disks of OLTP
applications at two large financial institutions.

SPC1: We use a trace (as seen by a subset of disks)
when servicing the SPC-1 benchmark [24]. It combines
three workloads that follow purely random, sequential,
and hierarchical reuse access models. This synthetic
workload has been widely used for evaluating cache
algorithms [25], [14], [16], [3].

Zipf Like: We use a synthetic trace that follows a
Zipf-like [37] distribution, where the probability of the
ith page being referenced is proportional to 1/iα (α =
0.75, over 400K blocks). This approximates common
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access patterns, such as in web traffic [9], [5]. Multi-
level caching algorithms [33], [12] have employed this
trace for evaluations.

Since write cache management policies need to lever-
age both temporal and spatial locality (see [15]), the
write cache is typically managed using a policy distinct
from the read cache. Following previous work [33],
[12], we focus on the read component of caches and
choose to ignore the writes for simplicity. Including
the writes would only turn the comparisons more in
favor of PROMOTE as they would increase contention
for the disk and network resources, a scenario in which
PROMOTE easily outshines DEMOTE. Each trace is
limited to the first two million reads to shorten the
experiment durations.

B. Software Setup

Promote ARC (H,T)

Hint Pages
Demoted Read Reply
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TCP/IP network connection

TCP/IP network connection

Fig. 7. CacheSim block diagram: Multiple instances form a hierarchy
of caches. Algorithm-specific interfaces are marked: D, H, and T
(T2hint).

We implemented CacheSim (Figure 7), a framework
which allows us to benchmark various algorithms for
a wide range of cache sizes, real-life traces, and any
single and multi-path hierarchy. CacheSim is instanti-
ated with a given cache size and one of the following
policies: LRU, ARC, DEMOTE-LRU, DEMOTE-ARC,
PROMOTE-LRU, and PROMOTE-ARC. One instance of
CacheSim simulates one level of cache in a multi-level
cache hierarchy, while communicating to the higher and
lower caches over a TCP/IP network. The highest level
reads requests from a trace file one I/O (size 512 bytes)
at a time, with no thinktime, while the lowest level
simulates disk responses with a fixed response time.

Apart from the traditional read interfaces, CacheSim
also implements two special interfaces:

• DEMOTE interface: Used only by the DEMOTE

technique to transfer evicted pages to the next
lower cache.

• Hint interface: Used by the PROMOTE technique
to periodically transfer life and occupancy infor-
mation to the next lower cache.

CacheSim simulates the following realistic roundtrip
response times for storage system hierarchies (based on
our knowledge): For two-level scenarios: t1 = 0.5 ms,
t2 = 1.0 ms, tm = 5.0. For three-level scenarios: t1 =
0.5 ms, t2 = 1.0 ms, t3 = 2.0 ms, tm = 10.0 ms. The
results in this paper are applicable for any set of values
where ti < ti+1.

C. The Competitors: DEMOTE vs. PROMOTE

To compare the two techniques, we apply both the
DEMOTE and the PROMOTE techniques to two popular
single-level caching policies. While LRU is the most
fundamental caching technique (variants of which are
widely used [26], [13], [11], [31]), ARC is arguably the
most powerful single-level caching algorithm [25]. A
multi-level cache performing the same as a single-level
ARC cache represents the most powerful application-
independent, multi-level caching policy.

DEMOTE-ARC is implemented by maintaining the
T1 and T2 lists as global lists, divided among all
caches in proportion to the size of the caches [12]. The
aggregate hit ratio is precisely equal to that obtained by
a single cache of the aggregate size implementing ARC.
This is the strongest multi-level caching contender we
can devise.

DEMOTE-LRU is implemented as suggested in ear-
lier work [33], also depicted earlier in Figure 2.
PROMOTE-LRU and PROMOTE-ARC are implemented
as explained in Section III.

For completeness, we also compare the performance
of LRU, which is defined as the simple Least Recently
Used (LRU) policy implemented in each cache within
the hierarchy. There are no inclusion or exclusion guar-
antees since each cache behaving as if it were the only
cache.

D. Measuring Success: The Treachery of Hits

Hit ratio has been extensively used in the study of
single-level caches, where higher hit ratios generally
imply better performance. In multi-level scenarios, how-
ever, the benefit of a hit varies significantly depending
on the cache level at which it occurs, making hit ratio
a misleading performance metric.

In this paper we use the average response time
as the key performance metric. In practice, different
algorithms result in different amounts of inter-cache
traffic, and in limited bandwidth scenarios, the observed
average response time depends more on the inter-cache
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Fig. 8. On the x-axis is the size of the C1 and C2 caches. We plot the inter-cache traffic (top-left), the aggregate hit ratio (top-right), and the
average response time allowing unlimited bandwidth and free demotions (bottom-left), as a function of the caching algorithm and cache size.
In a limited bandwidth scenario (300 blocks per second: 1.5 times that required if there were no hits or demotions), PROMOTE outperforms
DEMOTE significantly (bottom-right).

bandwidth usage than on the number or location of
hits. Hence, we measure both the inter-cache bandwidth
usage and the average response time (assuming unlim-
ited bandwidth). The actual bandwidth limit depends
on the hardware and the number and intensity of other
applications using the same network fabric. We provide
measurements for some limited bandwidth cases as well.

In our experimental results, error bars are not shown
since the average response times over separate runs was
within 1%, even for the adaptive algorithms.

V. RESULTS

A. Very Close Bounds on Offline Optimal Performance:
OPT-UB and OPT-LB

We computed the average response times for OPT-
UB and OPT-LB for a wide range of traces (Section IV-
A) and cache sizes (Figures 8 through 13), and found
that on an average the bounds ran within 2.18% and
2.83% of each other for two and three level single-
path hierarchies, respectively. The maximum separation
between bounds for any trace and cache combination
was only 8.6% and 10.0% for the two and three level
caches, respectively. In terms of inter-cache bandwidth
usage, OPT-LB is optimal and coincides with OPT-UB

for the C1-C2 traffic. This is because OPT-LB does not
use any demotions and achieves the maximum possible
hits in the C1 cache (as given by Belady’s OPT). For
C2-C3 traffic, the bounds run, on an average, within
3.4% of each other. OPT-LB is not optimal for the C2-
C3 traffic because it does not use demotions between
the C1 and C2 which could have potentially reduced the
number of misses flowing out of C2.

In a more complex multi-path scenario shown in
Figure 14 (and Figure 15), the bounds ran about 8.5%
(and 10.8%) of each other in terms of the average
response time, and coincided in terms of inter-cache
traffic.

We believe that the closeness of these bounds in
practice and the fact that they are significantly superior
to the current state-of-the-art multi-level caching algo-
rithms (Figures 8 through 13) constitute an extremely
significant result, and provide an important missing
perspective to the field of multi-level caching.

B. Two Cache Hierarchy

In Figure 8, we present detailed results for a first
trace, P1, in a two cache (same size) hierarchy. We ob-
served similar results with all traces given in Section IV-
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Two Cache Hierarchy on traces P3, P5, and P7
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Fig. 9. On the x-axis is the size of the C1 and C2 caches. We plot the inter-cache traffic (left), and the average response time allowing
unlimited bandwidth and free demotions (right), as a function of the caching algorithm and cache size.

A, the results for some of which are shown in Figures 9
and 10.

Inter-cache Bandwidth Usage: PROMOTE 2x more
efficient than DEMOTE. In Figure 8-10, we plot the total
traffic between the C1 and C2 caches (demotions + C1

misses). Observe that as the cache sizes grow, the inter-
cache traffic decreases as C1 produces more hits. For
both LRU and ARC variants, DEMOTE generates more
than double the traffic generated by PROMOTE. This
is because DEMOTE causes a demotion for every C1

miss (after C1 is full), and also incurs more misses
in C1 than PROMOTE. This is true for all traces and
cache sizes, where, on an average, DEMOTE requires
101% more inter-cache bandwidth than PROMOTE for

the LRU variant, and about 121% more for the ARC
variant.

Aggregate Hit Ratio: PROMOTE same as DEMOTE.
In Figure 8, we observe that both PROMOTE-LRU and
PROMOTE-ARC achieve almost the same aggregate hit
ratio as their DEMOTE counterparts. This was observed
for all traces and cache sizes. We also confirm that
plain LRU achieves the lowest aggregate hit ratio as
the inclusive nature of the lower cache results in very
few hits. Please note, however, that the aggregate hit
ratio is not a reliable performance metric.

Hits in the Highest Cache: PROMOTE beats
DEMOTE.

For the same aggregate hit ratio, a higher number
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Two Cache Hierarchy on traces Financial2, SPC1, and Zipf-like
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Fig. 10. On the x-axis is the size of the C1 and C2 caches. We plot the inter-cache traffic (left), and the average response time allowing
unlimited bandwidth and free demotions (right), as a function of the caching algorithm and cache size.

P1 P3 P5 P7 P9 P11 Financial1 Financial2 spc1 zipf
PROMOTE-ARC 709476 546440 377332 456983 570250 692042 532270 1204243 533414 845104
DEMOTE-ARC 408174 333751 280481 263244 469771 540978 506503 947009 390810 365909

PROMOTE-LRU 653880 446803 210473 222156 511271 639430 644893 1410101 291183 791667
DEMOTE-LRU 590276 140384 172625 125960 396135 667633 688946 1488752 155197 760877

TABLE I. Number of C1 hits (out of 2000000 requests), at a cache size of 50K blocks. While aggregate hits were almost the same for both

PROMOTE and DEMOTE, we observed that PROMOTE accumulates more hits in C1.
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Varying Relative Cache Sizes in a Two Cache Hierarchy
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Fig. 11. On the x-axis is the size of the C1 (higher) cache. |C1| + |C2| = 100K blocks.

of hits in the highest cache leads to better average
response times. In Table I, we compare the number of
hits in C1 for a wide range of traces with two levels
of cache of 50K blocks each. While all the traces
exhibited similar behavior, we skip some traces in the
table to keep it small. We observe that PROMOTE-
LRU beats DEMOTE-LRU by 13.0% on an average,
and PROMOTE-ARC beats its DEMOTE contender by
37.5%. This is primarily because PROMOTE probabilis-
tically promotes high reuse pages to the higher cache,
while DEMOTE forces all pages to flow through the
higher cache, pushing out a great number of hits to the
lower cache levels.

Average Response Time: PROMOTE beats DEMOTE.
In Figure 8 we plot the average response time for
the trace P1 at various cache sizes. When we assume
an unlimited inter-cache bandwidth and free demotions
(although DEMOTE has a rough model to attribute for
demotion costs, we create the case most favorable to
DEMOTE), PROMOTE-LRU still beats DEMOTE-LRU
by up to 4% and PROMOTE-ARC beats DEMOTE-ARC
by up to 5% across all cache sizes. For all other traces
(some shown in Figures 9 and 10) PROMOTE achieves
0.3%(LRU) and 1.5%(ARC) better response times on
an average.

In the lower right panel of Figure 8, we examine
a limited bandwidth case, which is more realistic. We
allow 300 blocks per second, which is 1.5x that required
if there were no hits or demotions (1/tm = 200). When
we average the response time across all cache sizes,
we observe that PROMOTE substantially outperforms
DEMOTE by achieving lower response times, 3.21ms
(for ARC) and 3.42ms (for LRU), as compared to
DEMOTE with 5.43ms (for ARC) and 5.05ms (for
LRU), respectively. In fact, both DEMOTE-LRU and
DEMOTE-ARC consistently perform worse than even
plain LRU. Surprisingly, for smaller cache sizes, DE-
MOTE variants perform even worse than no caching at

all (i.e. worse than tm = 5ms)! This happens because,
when bandwidth is the bottleneck and we use DEMOTE,
the bandwidth saved due to one hit in cache C1 is
consumed by one demotion due to a miss. When the
number of misses is greater than the number of hits in
the cache C1 ( < 50% hit ratio), a no-caching policy
will actually perform better.

Since DEMOTE is clearly worse in the limited band-
width case, we consistently assume unlimited inter-
cache bandwidth and free demotions for the remaining
traces shown in Figures 9 and 10.

C. Differing Cache Sizes

In Figure 11, we vary the relative size of the C1

and C2 caches from 1 : 9 to 9 : 1 while keeping
the aggregate cache size equal to 100K blocks. We
present average response time and inter-cache traffic
(assuming unlimited bandwidth and free demotions) for
the trace P1 (other traces have similar results). We
observe that PROMOTE variants have consistently better
response times than the DEMOTE variants across the
entire spectrum of relative sizes. The average response
time for plain LRU peaks (implying that the hit ratio is
the lowest) when the two caches are of the same size.
This confirms that the most duplication of data happens
when the caches are of comparable sizes. For all the
other algorithms, the average response time decreases
as the size of the C1 cache increases as more hits occur
at the highest cache.

As before, we observe that the DEMOTE variants
invariably consume 2x bandwidth when compared to
the PROMOTE variants.

D. Varying Inter-cache Bandwidth

We consider a client using 50K blocks each in
two levels of cache, and having a network impact of
up to 500KBps. In a typical enterprise SAN environ-
ment, there are thousands of such concurrent appli-
cation threads, scaling the need for both cache and
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Fig. 12. In a two-cache hierarchy with 50K blocks each, we vary
the inter-cache bandwidth available to a client on the x-axis. On the
y-axis we plot the average response time in milliseconds.

network resources by many orders of magnitude. In
fact, even without demotions, many SAN environments
are regularly found bandwidth-bound (particularly with
sequential reads), implying, as we observe below, that
implementing DEMOTE might be detrimental to perfor-
mance.

In Figure 12, we plot the average response time as
a function of the inter-cache bandwidth available to
the client. For each algorithm, we notice two regimes,
a bandwidth-sensitive regime on the left side where
decreasing the bandwidth available increases the av-
erage response time, and a bandwidth-insensitive, flat
regime, on the right. As expected, OPT-UB, closely
followed by OPT-LB, performs the best, with the
lowest average response time and the least inter-cache
bandwidth requirement (as indicated by the long flat
portion on the right). Note that, the DEMOTE variants
perform even worse than plain LRU when bandwidth is
not abundant. SAN environments which cannot accom-
modate the 2x network cost of DEMOTE over LRU will
see this behavior. This fundamental concern has limited
the deployment of DEMOTE algorithms in commercial
systems.

The PROMOTE variants are significantly better than
the DEMOTE variants when bandwidth is limited, while
they outperform LRU handsomely when bandwidth is
abundant. As bandwidth is reduced, LRU becomes only
marginally worse than PROMOTE because the benefit of
more hits in the lower cache, C2, is no longer felt as the
bandwidth between the caches becomes the bottleneck.
Overall, PROMOTE performs the best in all bandwidth
regimes.

E. Three Cache Hierarchy

Increasing the complexity of the hierarchies we study,
we now turn to a three-level (three equal size caches)
hierarchy.

As in the two-level case, we present detailed results
for the first trace P1 in Figure 13. The other traces had
similar results but we do not present plots for lack of
space.

We observe that for the wide variety of traces and
cache sizes, PROMOTE outperforms DEMOTE in three-
level caches as well:

Inter-cache Bandwidth Usage: PROMOTE is 2x
more efficient than DEMOTE which uses 105% (111%
resp.) more bandwidth between C1 and C2 and 98%
(113% resp.) more bandwidth between C2 and C3,
when compared to PROMOTE-LRU (PROMOTE-ARC,
respectively).

Aggregate Hit Ratio: PROMOTE same as DEMOTE.
Hits in the Highest Cache: PROMOTE achieves 1.5%

and 10% more hits in the top two caches than DEMOTE

for the LRU and ARC variants, respectively.
Average Response Time: When bandwidth is not

limited and demotions are free, PROMOTE beats DE-
MOTE by 0.2% and 1.3% on the average response
time for LRU and ARC variants, respectively. For a
limited bandwidth case, where we allow 200 blocks
per second (2x times 1/tm = 100), When we average
the response time across all cache sizes, we observe
that PROMOTE substantially outperforms DEMOTE by
achieving lower response times, 5.61ms (for ARC)
and 5.93ms (for LRU), as compared to DEMOTE with
8.04ms (for ARC) and 7.57ms (for LRU), respectively.

F. More Complex Cache Hierarchies

PROMOTE can be applied to complex hierarchies.
As the possible configurations are endless, we pick
two simple and yet interesting configurations for our
experiments.

1) Tree-like Hierarchy: We use a hierarchy of three
caches, C1a (40K blocks) and C1b (30K blocks) at
the first level, and a shared cache C2 (50K blocks) at
the second-level (see Figure 14). While C1a serves one
of P2, P3, P4 or P5 traces, C1b serves the P1 trace.
We impose no bandwidth restrictions and assume free
demotions for the DEMOTE algorithm. We observe that
for all four combinations, the PROMOTE-LRU has equal
or better average response time while generating only
half the inter-cache traffic than DEMOTE-LRU. DE-
MOTE cannot be applied to tree-like ARC hierarchies,
allowing PROMOTE-ARC to win by default. This is
because DEMOTE simulates a global ARC algorithm
which adapts the ratio of the global ARC lists, T1 and
T2. In single-path scenarios, the same ratio of the two
ARC lists, |T1| : |T2|, can be enforced at all levels.
However, in multi-path scenarios, this is not always
possible, as the amount of T2 pages in a cache depends
on the workload it sees, and the ratio determined by
ARC may not be enforceable.
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Fig. 13. On the x-axis is the size of each cache: C1, C2, and C3. We present the total traffic between C1 and C2 (top-left), the aggregate hit
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sizes. In a limited bandwidth scenario (200 blocks per second: 2 times that required if there were no hits or demotions), PROMOTE outperforms
DEMOTE significantly (bottom-right).

h1b (OPTUB) = h1b (OPTLB) = hitOpt(P1, 30K)

P1

C1a C1b
30K blocks

C2
50K blocks

40K blocks

P2 (or P3,P4,P5) 

t(c1a) = 0.5ms t(c1b) = 0.5ms

t(c2) = 1.0ms

t(m) = 5.0ms

P2’ P1’

h1a (OPTUB) = h1a (OPTLB) = hitOpt(P2, 40K)

h2 (OPTUB) = hitOpt(P1+P2, 120K) − (h1a + h1b)
h2 (OPTLB) = hitOpt(P1’+P2’, 50K)

Hit Ratio Contribution Traf. (MBlocks) Avg.
= hits / 4000000 C1a- C1b- Resp.

C1a C1b C2 Aggr C2 C2 Time
DEMOTE-LRU 0.14 0.10 0.12 0.36 2.83 3.16 3.45
PROMOTE-LRU 0.14 0.12 0.10 0.36 1.46 1.54 3.45

P1+P2 PROMOTE-ARC 0.16 0.14 0.13 0.43 1.36 1.43 3.13
OPT-LB 0.27 0.24 0.10 0.61 0.90 1.04 2.29
OPT-UB 0.27 0.24 0.12 0.63 0.90 1.04 2.12

DEMOTE-LRU 0.02 0.10 0.10 0.23 3.77 3.16 4.01
PROMOTE-LRU 0.04 0.11 0.08 0.23 1.83 1.55 4.01

P1+P3 PROMOTE-ARC 0.10 0.14 0.10 0.34 1.59 1.45 3.51
OPT-LB 0.20 0.24 0.12 0.56 1.21 1.04 2.53
OPT-UB 0.20 0.24 0.14 0.59 1.21 1.04 2.29

DEMOTE-LRU 0.02 0.10 0.06 0.18 3.82 3.16 4.23
PROMOTE-LRU 0.01 0.11 0.06 0.18 1.94 1.55 4.22

P1+P4 PROMOTE-ARC 0.03 0.14 0.10 0.27 1.87 1.45 3.85
OPT-LB 0.09 0.24 0.08 0.41 1.66 1.04 3.20
OPT-UB 0.09 0.24 0.11 0.44 1.66 1.04 2.98

DEMOTE-LRU 0.03 0.10 0.08 0.21 3.68 3.16 4.08
PROMOTE-LRU 0.04 0.13 0.05 0.22 1.86 1.55 4.06

P1+P5 PROMOTE-ARC 0.09 0.14 0.09 0.32 1.66 1.43 3.60
OPT-LB 0.17 0.24 0.10 0.51 1.33 1.04 2.74
OPT-UB 0.17 0.24 0.12 0.53 1.33 1.04 2.53

Fig. 14. A tree-like multi-path cache hierarchy. Traces do not overlap (2 million reads each). For ease of comparison between caches, the
individual hit ratio contributions are normalized based on the total number of reads in the cache hierarchy.

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 63



h1 (OPTUB) = h1 (OPTLB) = hitOpt(P1+P2, 50K)

50K blocks

30K blocks40K blocks

C1

C2a C2b

t(c1) = 0.5ms 

t(c2a) = 1.0ms t(c2b) = 1.0ms

t(m) = 5.0ms

P1 + P2 (or P3,P4,P5)

h2a+h2b (OPTUB) = hitOpt(P1+P2, 120K) − h1

P2’ P1’

h2a (OPTLB) = hitOpt(P2’, 40K)
h2b (OPTLB) = hitOpt(P1’, 30K)

Hit Ratio Contribution Traf. (MBlocks) Avg.
= hits / 4000000 C1- C1- Resp.

C1 C2a C2b Aggr C2a C2b Time
DEMOTE-LRU 0.19 0.10 0.06 0.35 3.17 3.27 3.50
PROMOTE-LRU 0.18 0.11 0.06 0.35 1.73 1.54 3.49

P1+P2 PROMOTE-ARC 0.23 0.13 0.07 0.43 1.62 1.46 3.18
OPT-LB 0.46 0.06 0.08 0.60 1.05 1.09 2.35
OPT-UB 0.46 0.00 0.00 0.63 1.05 1.09 2.10

DEMOTE-LRU 0.11 0.08 0.07 0.25 3.83 3.25 3.93
PROMOTE-LRU 0.15 0.04 0.05 0.24 1.87 1.55 3.97

P1+P3 PROMOTE-ARC 0.20 0.08 0.06 0.35 1.78 1.40 3.52
OPT-LB 0.40 0.06 0.10 0.56 1.33 1.08 2.57
OPT-UB 0.40 0.00 0.00 0.59 1.33 1.08 2.27

DEMOTE-LRU 0.13 0.01 0.06 0.20 3.87 3.04 4.15
PROMOTE-LRU 0.11 0.02 0.06 0.19 1.96 1.58 4.20

P1+P4 PROMOTE-ARC 0.17 0.03 0.06 0.26 1.96 1.37 3.88
OPT-LB 0.32 0.05 0.03 0.41 1.75 0.95 3.21
OPT-UB 0.32 0.00 0.00 0.44 1.75 0.95 2.98

DEMOTE-LRU 0.12 0.04 0.07 0.22 3.75 3.27 4.07
PROMOTE-LRU 0.13 0.03 0.06 0.22 1.91 1.58 4.07

P1+P5 PROMOTE-ARC 0.18 0.07 0.07 0.31 1.86 1.44 3.66
OPT-LB 0.36 0.06 0.09 0.51 1.49 1.06 2.77
OPT-UB 0.36 0.00 0.00 0.53 1.49 1.06 2.51

Fig. 15. An inverted tree-like single-path cache hierarchy. Two traces are merged before presenting to cache C1. For ease of comparison
between caches, the individual hit ratio contributions are normalized based on the total number of reads in the cache hierarchy.

In Figure 14, we also show the steps used to compute
OPT-UB and OPT-LB in accordance to Section II-
D. As usual, we observe that OPT-LB and OPT-
UB provide close bounds (8.5% apart) on the optimal
performance for the given hierarchy.

2) Inverted Tree-like Hierarchy: We invert the cache
hierarchy used above as shown in Figure 15. At the
first level we have a single cache C1a (50K blocks)
and at the second level we have C2a (40K blocks) and
C2b (30K blocks). The trace P1 accesses data through
the C1, C2a hierarchy, while the traces P2, P3, P4 or
P5 are served through the C1, C2b hierarchy. We again
notice that PROMOTE-LRU performs within 1% of the
DEMOTE variant in terms of response time, and is twice
as efficient in terms of bandwidth usage. PROMOTE-
ARC performs much better than the LRU based algo-
rithms as expected. DEMOTE cannot generalize ARC
for this hierarchy and thus is not a contender. Again
we observe that OPT-LB and OPT-UB provide close
bounds (10.8% apart) on the optimal performance for
the given hierarchy.

VI. CONCLUSIONS

As large caches are becoming ubiquitous, multi-level
caching is emerging as an important field for innovation.
In this paper we have made two major contributions.

We have demonstrated a simple and powerful tech-
nique, called PROMOTE, which is significantly supe-
rior to the popular DEMOTE technique. For half the
bandwidth, PROMOTE provides similar aggregate hit
ratios for a variety of workloads, with more hits in
the topmost cache. The reduction in bandwidth usage
provides huge improvements in average response times
when network resources are not abundant. Even in

constrained bandwidth cases, unlike DEMOTE, PRO-
MOTE always performs better than a non-exclusive
hierarchy of caches. This characteristic is essential for
implementation in commercial systems where network
usage behavior cannot be predicted. We anticipate the
principles in the PROMOTE technique to engender more
sophisticated multi-level caching policies in the future.

While improving caching algorithms is important,
knowing the theoretical bounds on performance is ex-
tremely invaluable. We have provided this much needed
knowledge in the form of two very close bounds on
the optimal performance. OPT-UB delimits the best
possible response time and bandwidth usage for any
multi-level caching policy, while, OPT-LB serves as
the best known off-line multi-level caching policy that
we are aware of. We hope that these new bounds will
spur and guide future research in this field.
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