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Abstract
A secure voting machine design must withstand new at-
tacks devised throughout its multi-decade service life-
time. In this paper, we give a case study of the long-
term security of a voting machine, the Sequoia AVC
Advantage, whose design dates back to the early 80s.
The AVC Advantage was designed with promising secu-
rity features: its software is stored entirely in read-only
memory and the hardware refuses to execute instructions
fetched from RAM. Nevertheless, we demonstrate that an
attacker can induce the AVC Advantage to misbehave
in arbitrary ways — including changing the outcome of
an election — by means of a memory cartridge contain-
ing a specially-formatted payload. Our attack makes es-
sential use of a recently-invented exploitation technique
called return-oriented programming, adapted here to the
Z80 processor. In return-oriented programming, short
snippets of benign code already present in the system
are combined to yield malicious behavior. Our results
demonstrate the relevance of recent ideas from systems
security to voting machine research, and vice versa. We
had no access either to source code or documentation be-
yond that available on Sequoia’s web site. We have cre-
ated a complete vote-stealing demonstration exploit and
verified that it works correctly on the actual hardware.

1 Introduction
A secure voting machine design must withstand not only
the attacks known when it is created but also those in-
vented through the design’s service lifetime. Because
the development, certification, and procurement cycle for
voting machines is unusually slow, the service lifetime
can be twenty or thirty years. It is unrealistic to hope
that any design, however good, will remain secure for so
long.1

In this paper, we give a case study of the long-term
security of a voting machine, the Sequoia AVC Advan-
tage. The hardware design of the AVC Advantage dates
back to the early 80s; recent variants, whose hardware
differs mainly in featuring a daughterboard enabling au-
dio voting for the blind [3], are still used in New Jersey,
Louisiana, and elsewhere. We study the 5.00D version

The AVC Advantage voting machine we studied.

(which does not include the daughterboard) in machines
decommissioned by Buncombe County, North Carolina,
and purchased by Andrew Appel through a government
auction site [2].

The AVC Advantage appears, in some respects, to of-
fer better security features than many of the other direct-
recording electronic (DRE) voting machines that have
been studied in recent years. The hardware and software
were custom-designed and are specialized for use in a
DRE. The entire machine firmware (for version 5.00D)
fits on three 64kB EPROMs. The interface to voters
lacks the touchscreen and memory card reader common
in more recent designs. The software appears to con-
tain fewer memory errors, such as buffer overflows, than
some competing systems. Most interestingly, the AVC
Advantage motherboard contains circuitry disallowing
instruction fetches from RAM, making the AVC Advan-
tage a true Harvard-architecture machine.2

Nevertheless, we demonstrate that the AVC Advan-
tage can be induced to undertake arbitrary, attacker-
chosen behavior by means of a memory cartridge con-
taining a specially-formatted payload. An attacker who
has access to the machine the night before an election can
use our techniques to affect the outcome of an election by
replacing the election program with another whose vis-
ible behavior is nearly indistinguishable from the legiti-
mate program but that adds, removes, or changes votes
as the attacker wishes. Unlike those attacks described
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in the (contemporaneous, independent) study by Appel
et al. [3, 4] that allow arbitrary computation to be in-
duced, our attack does not require replacing the system
ROMs or processor and does not rely on the presence of
the daughterboard added in later revisions.

Our attack makes essential use of return-oriented pro-
gramming [24, 8], an exploitation technique that allows
an attacker who controls the stack to combine short in-
struction sequences already present in the system ROM
into a Turing-complete set of combinators (called “gad-
gets”), from which he can synthesize any desired behav-
ior. (Our exploit gains control of the stack by means of
a buffer overflow in the AVC Advantage’s processing of
a type of auxiliary cartridge; see Section 5.) Defenses
that prevent code injection, such as the AVC Advan-
tage’s instruction-fetch hardware, are ineffective against
return-oriented programming, since it allows an attacker
to induce malicious behavior using only preëxisting, be-
nign code. Return-oriented programming was introduced
by Shacham at CCS 2007 [24], a full two decades after
the AVC Advantage was designed. Originally believed
to apply only to the x86, return-oriented programming
was generalized to the SPARC, a RISC architecture, by
Buchanan et al. [8]. In Section 4 we show that return-
oriented programming is feasible on the Z80 as well,
which may be of independent interest. In addition, we
show that it is possible starting with a corpus of code an
order of magnitude smaller than previous work.

Using return-oriented programming, we have devel-
oped a full demonstration exploit for the AVC Advan-
tage, by which an attacker can divert any desired frac-
tion of votes from one candidate to another. We have
tested that this exploit works on the actual hardware; but
in developing our exploit we used a simulator for the ma-
chine. See Sections 5 and 6 for more on the exploit and
Section 2 for more on the simulator.

Our results demonstrate the relevance of recent ideas
from systems security to voting machine research, and
vice versa. Our attack on the AVC Advantage would
have been impossible without return-oriented program-
ming. Conversely, the AVC Advantage provides an ideal
test case for return-oriented programming. In contrast to
Linux, Windows, and other desktop operating systems,
in which the classification of a process’ memory into
executable and nonexecutable regions can be changed
through system calls, the AVC Advantage is a true Har-
vard architecture: ROM is executable, RAM is nonexe-
cutable.3 The corpus of benign instruction on which we
draw is just 16kB, an order of magnitude smaller than in
previous attacks.

In designing our attack, we had access neither to
source code nor to usage documentation; through reverse
engineering of the hardware and software, we have re-
constructed the functioning of the device. This is in con-

trast to the Appel et al. report, whose authors did have
this access, as well as to most of the previous studies of
voting machines (discussed in Section 1.1 below). We
had access to an AVC Advantage legitimately purchased
from a government surplus site by Andrew Appel [2]
and a memory cartridge similarly obtained by Daniel Lo-
presti. Since voting machines are frequently left unat-
tended (as Ed Felten has documented, e.g., at [12]), we
believe that ours represents a realistic attack scenario.
We hope that our results go some way towards answering
the objection, frequently raised by vendors, that voting
security researchers enjoy unrealistic access to the sys-
tems they study.4

1.1 Related work
Much of the prior research on voting machine security
has relied on access to source code. The first such work
by Kohno et al. [18] analyzed the Diebold5 AccuVote-
TS voting machine and found numerous problems. The
authors had no access to the voting machine itself but the
source code had appeared on the Internet. Many of the
issues identified were independently confirmed with real
voting machines [9, 21, 22].

Follow up work by Hursti examined the AccuVote-
TS6 and AccuVote-TSx voting machines using “source
code excerpts” and by testing the actual machines. Back-
doors were found that allowed the system to be exten-
sively modified [17]. Hursti’s attacks were confirmed
and additional security flaws were discovered by Wag-
ner et al. [27].

In 2006, building on the previous work, Feldman et al.
examined an AccuVote-TS they obtained. The authors
did not have the source code, but they note that “the be-
havior of [the] machine conformed almost exactly to the
behavior specified by the source code to BallotStation
version 4.3.1” which was examined by Kohno et al. In
addition to confirming some of the security flaws found
in the previous works, they demonstrated vote stealing
software and a voting machine virus that spreads via the
memory cards used to load the ballot definition files and
collect election results [11].

In 2007, California Secretary of State Debra Bowen
decertified and then conditionally recertified the direct
recording electronic voting machines used in California
as part of a top-to-bottom review. As part of the re-
certification, voting machine vendors were required to
make available to independent reviewers documentation,
source code, and several voting machines. In all cases,
significant problems were reported with the procedures,
code, and hardware reviewed [6].

Also in 2007, Ohio Secretary of State Jennifer Brunner
ordered project EVEREST — Evaluation and Validation
of Election Related Equipment, Standards and Testing —
as a comprehensive review of Ohio’s electronic voting
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machines. Similar to California’s top-to-bottom review,
the reviewers had access to voting machines and source
code. Again, critical security flaws were discovered [7].

2 The road to exploitation
In 1997, Buncombe County, North Carolina, purchased
a number of AVC Advantage electronic voting machines
for $5200 each. In January 2007, they retired these ma-
chines and auctioned them off through a government-
surplus web site. Andrew Appel purchased one lot of
five machines for $82 in total [2].

Reverse-engineering the voting machine. Two mem-
bers of our team immediately began reverse engineering
the hardware and software. The machine we examined
is an AVC Advantage revision D. It contains ten cir-
cuit boards, including the motherboard shown in Fig-
ure 1, with an eleventh inside the removable memory
cartridge — see below. Each is an ordinary two-sided
epoxy-glass type. Since these are somewhat translucent,
with the use of a bright light, magnifying glass, low-
voltage continuity tester, and data sheets for the compo-
nents, we were able to trace and reconstruct the circuit
schematic diagram, and from that deduce how the unit
worked. We filled in remaining details by partially disas-
sembling the machine’s software using IDA Pro.

After approximately six man-weeks of labor, we pro-
duced a functional specification [14] describing the op-
eration of the hardware from the perspective of software
running on the machine. We documented 47 I/O func-
tions that the processor can execute to control hardware
functions, such as mapping areas of ROM into the address
space, interfacing with the voter panel and operator con-
trols, and reading or writing to the memory cartridge.

Reverse-engineering the results cartridge. The AVC
results cartridge is a plastic box about the dimensions of
a paperback book with a common “ribbon-style” connec-
tor on one end that mates to the voting machine. Inside,
there is an ordinary circuit board containing static RAM
chips — backed by two type AA batteries — and common
TTL 74-series integrated circuits. There is no microcon-
troller; instead all control signals come directly from the
voting machine. Much of the internal circuitry appears
to have been designed to withstand hot-plugging and to
prevent accidental glitching of the memory contents.

There is an additional 8bit of nonmemory data that
can be read from the unit corresponding to the type and
revision of the memory cartridge. This data is set by etch
jumpers on the circuit board. We were able to change
the type and revision of the cartridge by cutting the as-
sociated trace on the circuit card and wiring alternate
jumpers.

The contents of memory can be read or written by
powering the device and toggling the appropriate input

signals. We constructed a simple microcontroller cir-
cuit to interface with the cartridge to perform reads and
writes. The microcontroller simply controls the appro-
priate signals on the cartridge connector to perform the
operation indicated by a controlling program communi-
cating with the microcontroller via a serial port. No ac-
cess to the inside circuitry was necessary.

By disassembling the software and looking at the con-
tents of a valid results cartridge, we were able to under-
stand the format of the file system used on the memory
cartridges (and also the internal file system of the 128kB
SRAM described below) and many of the files used by
the voting machine.

Crafting the exploit. Joshua Herbach used the hard-
ware functional specifications to develop a simulator for
the machine [15], which another member of our team
subsequently improved.6 Our simulator now provides
cycle-accurate emulation of the Z80, and it executes the
AVC election software without any apparent flaws.

We developed our exploit almost entirely in the sim-
ulator, only returning to the actual voting machine hard-
ware at the end to validate it. Remarkably, the exploit
worked the first time we tried it on the real hardware.

Total cost. Starting with no source code or schemat-
ics, we reverse engineered the AVC Advantage and de-
veloped a working vote-stealing attack with less than 16
man-months of labor. We estimate the cost of duplicating
our effort to be about $100,000, on the private market.

3 Description of the AVC Advantage
In this section, we give a description of the hardware and
software that makes up the AVC Advantage in some de-
tail. Readers not interested in such low-level details are
encouraged to skip ahead to Section 4, referring back to
this section for details as needed.

3.1 Software
The core of the version-5.00D AVC Advantage is a
Z80 CPU and three 64kB erasable, programmable ROMs
(EPROMs) which contain both code and data for the Ad-
vantage. Each EPROM is divided into four 16kB seg-
ments: BIOS, System Toolkit, Toolkit 2, Toolkit 3, Elec-
tion Program, Election Toolkit, Reports Program, Con-
solidation Program, Ballot Verify Program, Define Ballot
Program, Maintenance Utilities, and Setup Diagnostics;
see Figure 2.

When the Advantage is powered on, execution begins
in the BIOS at address 0x0000. The BIOS contains a
mixture of hand-coded assembly and compiler generated
code for interrupt handling, remapping parts of the ad-
dress space (see Section 3.2), function call prologues and
epilogues, thunks for calling code in other segments, and
code for interacting with the peripherals.
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Figure 1: We reverse engineered the AVC Advantage hardware. The motherboard, shown here, is composed mostly of
discrete logic and measures 14in×14in. Election software is stored in removable ROM chips (white labels). The results and
auxiliary memory cartridges are plugged directly into the motherboard (upper right).

Apart from the BIOS, each EPROM segment contains a
16B header followed by a mixture of (mostly) compiler-
generated code and data. The segments with “Toolkit”
in their name7 in addition to the Reports Program con-
sist of the header followed immediately by a sequence of
jp addr instructions, each of which jumps to a global
function in the segment. For the entries in this sequence
corresponding to global functions, there is a correspond-
ing thunk in the BIOS which causes the segment to be
mapped into the address space before transferring control
to the function. Functions in one segment can call global
functions in another segment by way of the thunks.

Each of the remaining segments is a self-contained
program with just a single entry point immediately af-
ter the segment header. When a program is run, much of
the state of the previous program — including the stack
and the heap — is reset. In particular, any data written to
the stack during one program’s execution are lost during
a second program’s execution.

A typical sequence of events for an election would
include the following. The machine is powered on and
begins executing in the BIOS. The BIOS performs some
initialization and tests before transitioning to a menu in
Maintenance Utilities awaiting operator input. The op-

erator selects the Setup Diagnostics choice and the cor-
responding Setup Diagnostics program is run. This per-
forms various software and hardware tests before tran-
sitioning to the Define Ballot Program. This program
checks the memory cartridge inserted into the machine
and upon finding a ballot definition transitions to the Bal-
lot Verify Program. The Ballot Verify Program checks
that the format of the ballot is correct and ensures that
the files which hold the vote counts are empty. After
this, it illuminates the races and candidates so that the
technician can verify that they are correct. Assuming ev-
erything is correct, control transfers to the Election Pro-
gram for the pre-election logic and accuracy testing. The
voting machine is powered off at this point and shipped
to the polling places. After it has been powered back on,
control again passes to the Election Program, this time
for the official election.

The ZiLOG Z80 CPU is an 8bit accumulator machine.
All 8bit arithmetic and logical operations use the accu-
mulator register a as a source register and the destination
register. Apart from the accumulator register, there are
six general purpose 8bit registers b, c, d, e, h, and l
which can be paired to form three 16bit registers bc, de,
and hl. These registers along with an 8bit flags regis-
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Figure 2: EPROM segment layout.

ter f and 16bit stack pointer sp and program counter pc
registers are compatible with the Intel 8080. In addition,
there are two 16bit index registers ix and iy, an inter-
rupt vector register i, a DRAM refresh counter register r,
and four shadow registers af’, bc’, de’, and hl’ which
can be swapped with the corresponding nonshadow reg-
isters. The Advantage uses the shadow registers for the
interrupt handler which obviates the need to save and re-
store state in the interrupt handler. See [28] for more
details.

Due to the limited ROM space for code and data,
compiler-generated functions which take arguments or
have local variables use additional functions to imple-
ment the function prologue and epilogue. The prologue
pushes the iy and ix registers and decrements the stack
pointer to reserve room for local variables. It then sets
iy to point to the first argument and ix-80h to point
to the bottom of the local stack space. Finally, it pushes
the stack-address of the two saved index registers and the
address of the epilogue function before jumping back to
the function that called the prologue. See Figure 3. The
epilogue function pops the saved pointer to the index reg-
isters and loads sp with it. Then ix and iy are popped
and the epilogue returns to the original saved pc. It is the
caller’s responsibility to pop the arguments off the stack
once the callee has returned.

3.2 Address space layout

The AVC Advantage has a 16bit flat address space di-
vided into four distinct regions. The bottom 16kB
is mapped to the BIOS. The 16kB–32kB range can
be mapped to one of the 12 16kB aligned segments
on the three program EPROMs. This mapping is con-
trolled by the software using the Z80’s out instruction.
The 32kB–63kB range addresses the bottom 31kB of a
32kB, battery-backed SRAM. Finally, the top 1kB of the
address space can be mapped to either the top 1kB of

argn

...
arg1

spc
sp

(a) The state of the
stack immediately af-
ter calling the func-
tion.

argn

...
arg1

spc

siy

six

locals

sp

ix

iy

epilogue

(b) The state of the stack after re-
turning from the prologue func-
tion.

Figure 3: The state of the stack after calling a function
with n arguments.

the 32kB SRAM or it can be mapped to any 1kB aligned
region of a 128kB, battery-backed SRAM. This mapping
can be changed by the software using the Z80’s out in-
struction. For more detail, see [14].

The AVC Advantage’s stack starts at address 0x8FFE
and grows down toward smaller addresses. The heap oc-
cupies a region of memory starting from an address spec-
ified by the currently active program to 0xEBFF. Scat-
tered throughout the rest of 32kB main memory, there
are various global variables and space for the string table
of the active program. In addition, starting at 0x934E
and growing down, there is space for a module call stack
which allows modules to make calls to functions in other
modules, such as printf or strcpy. See Figure 4.

As the lower 32kB of the address space corresponds
to EPROMs, data cannot be written to those addresses
and attempts to do so are silently ignored by the hard-
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0x0000

0x4000

0x8000

0xFC00RAM Segment

RAM

ROM Segment

BIOS

Figure 4: Address space layout of the AVC Advan-
tage. The dashed line represents the start of the stack at
0x8FFE. The ROM and RAM Segments are the portions
of the address space mappable to the 16kB aligned seg-
ments of the EPROM and 1kB aligned segments of the
128kB SRAM, respectively.

ware.8 Similarly, as the upper 32kB of the address space
is for writable memory, not program code, any attempt
to fetch an instruction from those addresses raises a non-
maskable interrupt (NMI). The NMI causes the processor
to load a known constant into the pc register and exe-
cution resumes in the BIOS where the processor will be
halted after displaying an error message on the operator
LCD. This design makes the AVC Advantage a Harvard-
architecture computer.

4 Return-oriented programming
Since the AVC Advantage is a Harvard architecture com-
puter, traditional code injection attacks cannot succeed
because any attempt to read an instruction from data
memory causes an NMI which will halt the machine. In
practice, given a large enough corpus of code, this is
not a barrier to executing arbitrary code using return-
oriented programming — an extension of return-to-libc
attacks where the attacker supplies a malicious stack con-
taining pointers to short instruction sequences ending
with a ret [24, 8].

The Z80 instruction set is very dense. Every byte is
either a valid opcode or is a prefix byte. As there are no
invalid or privileged instructions, instruction decoding of
any sequence of data always succeeds. This density facil-
itates return-oriented programming since we can exploit
unintended instruction sequences to build gadgets — a
sequence of pointers to instruction sequences ending
with a ret. For a concrete example, the BIOS contains
the code fragment ld bc,2; ret— a potentially use-
ful instruction sequence in its own right — which is 01
02 00 c9 in hex where the first three bytes are the
load and the last is the return. If we set the program
counter one byte into the load instruction, then we get the
instruction sequence 02 00 c9 corresponding to the

three instructions ld (bc),a; nop; ret which stores
the value of the accumulator into memory at the address
pointed to by the register bc.

Shacham [24] and later Buchanan et al. [8] had code
corpora on the order of a megabyte from which to con-
struct gadgets. In contrast, Francillon and Castelluc-
cia [13] had only 1978B of code with which to craft gad-
gets; however, they did not construct a Turing-complete
set of gadgets. This prompts the question: What is the
minimal amount of code required to construct a Turing-
complete set of gadgets? By constructing a Turing-
complete set of gadgets using only the AVC Advantage’s
BIOS — which consists of 16kB of code and data — we
make progress toward answering that question.

Following Shacham, we wrote a small program to
find sequences of instructions ending in ret. We ran
this program on the AVC Advantage’s BIOS. We then
manually devised a Turing-complete set of gadgets from
the instruction sequences found by our program, in-
cluding gadgets to control the peripherals like the LCDs
and memory cartridges. We build a collection of gad-
gets that implement a 16bit memory-to-memory pseudo-
assembly language. See Table 1 for a description of the
pseudo-assembly language and Appendix A for the im-
plementation of many of the gadgets and a precise expla-
nation of the notation that will be used in the remainder
of the paper.

(We stress that demonstrating return-oriented pro-
gramming on the Z80 is a major contribution of this paper
and of independent interest; we have moved the details to
an appendix to improve the paper’s flow.)

Some of the gadgets in Table 1 are straightforward to
construct; others require more finesse due to tricky in-
teractions among the registers used in the instruction se-
quences. For ease of implementation, no state is pre-
sumed to be preserved between gadgets. That is, all ar-
guments are loaded from memory into registers, operated
upon, and then stored back into memory.9 In this way,
each gadget can be reasoned about independently. The
operands to the gadgets are either global variables — de-
clared with the .var directive — or immediate values;
labels are resolved to offsets and thus are immediate val-
ues.

Some of the instruction sequences described in Ap-
pendix A contain NUL bytes which make them unsuitable
for use in stack smashing attacks using a string copy. An
early implementation of the gadgets took great pains to
avoid all zero bytes. However, using the multi-stage ex-
ploit described below, avoiding zero bytes was unneces-
sary except for in the first stage of the exploit which did
not use the gadgets presented in this section. As such,
the simpler form of the gadgets is presented.

It has become traditional in papers on return-oriented
programming to show a sorting algorithm implemented
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Table 1: The return-oriented pseudo-assembly language for the AVC Advantage consists of seven directives and 39 mnemon-
ics. An uppercase letter denotes a variable as defined by the .var directive and n denotes a 16bit literal.
† Register bc is set to C and the least significant byte of A is used for the accumulator.
‡ The AVC Advantage has a watchdog timer that raises a non-maskable interrupt if it is not reset often enough. See [14].

Mnemonic Description

.ascii "str" Inserts the bytes for str

.asciiz "str" .ascii "str"; .byte 0

.byte b,... Insert a byte for each argument

.data n Inserts n NUL bytes

.var A,n Define a new 16bit variable A at
location n

.word n,... Insert a word for each argument
label: Define a new label
add A,B,C A← B+C
addi A,B,n A← B+n
and A,B,C A← B &C
b label Branch to label
btr A,label Branch to label if A is true
bfa A,label Branch to label if A is false
call SP,label Push address of the next gadget

to stack at SP, jump to label
cpl A,B A←∼B
dec A A← A−1
di Disable interrupts
ei Enable interrupts
halt Halt the machine
in A,C in a,(c)†

inc A A← A+1
jr A Jump to address A

Mnemonic Description

la A,B Set A to the address of B
la A,label Set A to the address at label
ld A,n(B) A← (B+n)
ldx A,B,C A← (B+C)
li A,n A← n
mov A,B A← B
mul A,B,C A← B×C
neg A,B A←−B
nop Do nothing
or A,B,C A← B |C
out C,A out (c),a†

pet Pet the watchdog timer‡

pop SP,A A← (SP); SP← SP+2
push SP,A SP← SP−2; (SP)← A
pushi SP,n SP← SP−2; (SP)← n
ret SP Pop from stack at SP, jump to value
seq A,B,C A← B = C
slt A,B,C A← B < C
slti A,B,n A← B < n
sne A,B,C A← B 6= C
srl A,B,s A← B� s
st A,n(B) (B+n)← A
stx A,B,C (B+C)← A
sub A,B,C A← B−C

as a return-oriented program [8, 16]. In Appendix B, we
give the listing for a return-oriented Quicksort. We have
verified that this sorting algorithm works on the actual
AVC Advantage as part of a larger program that prints a
list of numbers on the printer, sorts them, and prints the
sorted list.

5 A multi-stage exploit for the AVC Advan-
tage

Even though many parts of the code we reverse engi-
neered appear to handle data from memory cartridges
safely, we have been able to find a stack buffer overflow
vulnerability. In this section, we describe this vulnerabil-
ity and discuss how an attacker can exploit it to overwrite
the AVC Advantage’s stack and reliably induce the exe-
cution of a return-oriented payload of his choice.

We stress that the buffer overflow that we have identi-
fied appears to be unrelated to the one identified by Appel
et al. in their report [3, Section II.26]. Our buffer over-
flow occurs in cartridge processing whereas Appel et al.’s
occurs in interaction with the daughterboard (which the
machine we studied lacks); our overflow requires manual
action, whereas Appel et al.’s is triggered on boot; our

overflow is exploitable for diverting the machine’s con-
trol flow, whereas Appel et al.’s appears to allow only a
denial of service. We do not know whether the overflow
that we found persists in the more recent AVC Advantage
version that Appel et al. examined.

One of the programs not normally used in an election,
but accessible from the main menu, contains a buffer
overflow while reading from an auxiliary cartridge of a
certain type. (As described in Section 2, we physically
modified a results cartridge so that the AVC Advantage
would recognize it as a cartridge of the type for which the
appropriate menu item is enabled.) A maliciously crafted
field in one of the files allows roughly a dozen bytes to
be written at the location of the saved stack pointer. In
the first stage of the exploit, the hl register is set and
the stack pointer is modified using the sp ← hl in-
struction sequence, inducing a return-oriented jump to
an attacker-controlled location in memory.

For stage two, a section of memory under attacker con-
trol needs to contain gadgets. Fortunately (for the at-
tacker), a file of fixed size but with several dozen unused
bytes is read from the memory cartridge into a buffer al-
located by malloc. By the time of the overflow in stage
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Figure 5: The machine has slots for two memory car-
tridges. The first cartridge stores ballots and votes. An
attacker could install vote sealing code by inserting a pre-
pared cartridge into the second slot.

one, this buffer has been deallocated but most of its con-
tents remain in memory at a known location. This unused
space can be changed to contain gadgets that make up
the second stage of the exploit. The first thing that stage
two does is reallocate memory for the buffer so that ad-
ditional allocations will not overlap and thus write over
the gadgets. At the same time, enough memory is allo-
cated to hold the contents of an additional file from the
memory cartridge. The data from this file — stage three
of the exploit — is read into the allocated buffer. Control
then transfers to stage three which can perform arbitrary
code execution using the gadgets described in Section 4.

We have tested on an AVC Advantage that the exploit
procedure described in this section works, using it both to
run the sorting program described in the previous section
and the vote-stealing exploit described in the next.

6 Using the exploit to steal votes
We have designed and implemented a demonstration
vote-stealing exploit for the AVC Advantage, using the
vulnerability described in the previous section to take
over the machine’s control flow. We have tested that our
exploit works on the actual AVC Advantage. (Although
it was designed and debugged exclusively in our simula-

tor, the exploit worked on the real hardware on the first
try.) In this section, we describe both the actions that an
attacker will undertake to introduce the exploit payload
to the machine and the behavior of the payload itself.
We also note several ways in which the exploit could be
made more resistant to detection by means of forensic
investigation.

Our attacker accesses the AVC Advantage when it is
left unattended the night before the election. Ed Felten
has described how such access is often possible (see, e.g.,
[12]). At this point, the machine has been loaded with
an election definition and has passed pre-LAT.10 The at-
tacker picks the locks for the back cabinet, the voter
panel, and (later) the open/close polls switch. Appel et al.
have shown that these locks are of a low-security kind
that is easily bypassed [3, Section I.9]. The attacker does
not need to remove any tamper-evident seals; in particu-
lar, he does not need to remove the circuit-board cover.

Having gained access to the back cabinet of the AVC
Advantage, the attacker uses the normal functions to
open the polls, cast a single vote, and close the polls.
(The polls cannot be closed with no votes cast.11) Once
the polls are closed, the attacker unseats the results car-
tridge. The cartridge cannot be removed completely be-
cause of the tamper-evident seal; however, the seal is
small enough compared to the holes through which it
is inserted that the cartridge can be disconnected from
the machine. With the polls closed and the cartridge
removed, the attacker uses the two-key reset gesture
(“print-more” and “test”) to gain access to the machine’s
post-election menu. From this menu, he can reset the ma-
chine; after the reset, the machine’s main menu is acces-
sible. (Were the results cartridge not removed, the data
on it would be erased by the reset. The attacker might
be able to recreate this data and rewrite it to the results
cartridge, but unseating the cartridge before the reset ob-
viates this.)

To this point, the attacker is simply following the same
procedures poll workers and election officials use in run-
ning an election and resetting the AVC Advantage for
the next election. His goal is to gain access to the main
menu, from which he can direct the machine toward the
vulnerability described in Section 5.

The system reset appears to clear the audit logs on the
machine. Our demonstration vote-stealing exploit does
not undo this log-clearing, though a more stealthy attack
might wish to; otherwise, a post-election audit might dis-
cover that log entries are missing. (Although, as Davtyan
et al. have found in their audit of the AccuVote AV-OS
system [10], discrepancies in logs are not uncommon and
may not be perceived as signs of an attack.) Even if
the attack is detected, the original voter intent will not
be recoverable. The attacker can use the post-election
menu to dump the contents of the logs either to a trans-
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fer cartridge or to the printer and cause his exploit pay-
load to restore them once the system is compromised.
In addition, since a vote was cast, the protective counter
has been incremented; however, the protective counter
is subject to software manipulation and could easily be
rolled back if the attacker desires. Traces of the phantom
vote might also remain in the machine or operator logs; if
so, a stealthy exploit would have to remove these traces.

The attacker now reinserts the results cartridge and a
cartridge of the appropriate type into the auxiliary port
and navigates the menus to trigger the vulnerability de-
scribed in Section 5. Using a three-stage exploit as de-
scribed in Section 5, he takes control of the AVC Advan-
tage and can execute arbitrary (return-oriented) code.

Note that hardware miniaturization since the design
of the AVC Advantage makes possible the creation of
cartridges much smaller than legitimate cartridges with
orders of magnitude more storage. (Different parts of
memory could be paged in using a “secret knock” proto-
col.) A smaller cartridge may allow the attacker to by-
pass tamper-evident loops placed on the auxiliary port
guide rails that would prevent the insertion of a legiti-
mate cartridge (although we are not aware of a jurisdic-
tion that attempts to limit access to the auxiliary port in
this way); it may also allow him to leave an auxiliary
cartridge in place during voting while avoiding detec-
tion, which would be useful for exploit payloads larger
than can fit in main memory and unused portions of the
results cartridge. (As noted below, our exploit payload
easily fits in main memory.)

The exploit first restores those parts of the machine’s
state necessary to allow the election to begin again.
It copies the results cartridge’s post-LAT voting files
(which are in their empty state) over the results car-
tridge’s election files so that the single ballot that was
cast in order to close the polls is erased. It then copies
(most of) the contents of the results cartridge into the in-
ternal memory. At this point, a message is displayed on
the operator LCD instructing the attacker to remove the
auxiliary cartridge and turn off the power.

In order to convincingly simulate power off, we need
the power switch to be in the off position. Luckily, the
AVC Advantage has a soft power switch, so turning the
power knob just sets a flag that can be polled by the pro-
cessor at interrupt time to detect power off. So long as the
exploit code disables interrupts (while petting the watch-
dog timer to keep it from firing) it can keep the machine
running; it can also detect when, later, the power switch
is turned to the on position. (By contrast, were the ma-
chine actually to power down, the stack would be reset on
a subsequent power up and the attacker would lose con-
trol.) The AVC Advantage features a large 110V battery
designed for 16 hours of operation that we believe will
allow it to remain overnight in this state [23]. Of all the

steps in our exploit, this is the one that most intimately
relies on the details of the AVC Advantage’s hardware
implementation. We emphasize that we have tested on
the actual machine that our exploit code is able to sur-
vive a power-down/power-up cycle in this way on battery
power alone.

When the exploit code detects that the power switch
has been turned to the off position, it simulates power
down. It turns off the LEDs in the voter panel, clears the
LCD displays, and turns off any status LEDs. In testing
on an AVC Advantage, we have been able to disable (via
return-oriented code) all indicators of power except the
LCD backlight on the operator panel. This is the most
visible sign of our attack; we are currently studying how
the backlight might be disabled.

The attacker now closes and locks the operator and
voter panels, removes the auxiliary cartridge, and leaves.
The next morning, poll workers open the machine and
use the power switch to turn it on. The exploit code
detects the change and simulates the machine’s power-
up behavior, followed by the official election mode mes-
sages.

The exploit must now simulate the machine’s normal
behavior when poll workers open and close the polls and
when voters cast votes. While it would be possible to
reimplement this behavior entirely using return-oriented
code, the design of the AVC Advantage’s voting program
makes it possible for us to reuse large portions of the le-
gitimate code, making the exploit smaller, simpler, and
more robust. This would be more difficult to do if the
exploit modified votes as they were cast, but we have
instead chosen to wait until polls are closed and only
then change the cast votes retroactively. The absence of
a paper audit trail means that the vote modification will
not be detected. Other possible designs for vote-stealing
software are described by Appel et al. [3, Section I.5–6].

The main voting function is structured as a series
of function calls that can be separated into three main
groups, each called a single time in order in the normal
case. The first group of functions waits for the “open/-
close polls” switch to be set to open and prints the zero
tape. The second group of functions handles all of the
voting, including waiting for the activate button to be
pressed and handling all voter input. Once the polls are
closed, the third group of functions handles printing the
final results tape and all post-election tasks.

Our demonstration exploit uses the high-level func-
tions in the AVC Advantage’s legitimate voting program
to handle all voting until the polls are closed. Then the
exploit reads the vote totals, moves half of the votes for
the second candidate to the first candidate, and changes
the cast vote records (CVRs) to match the vote totals.
(Obviously, any fraction of the votes could be modified.
Furthermore, while our exploit processes the CVR log in
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order, changing every CVR cast for the disfavored can-
didate until the desired shift has been effected, more so-
phisticated strategies are possible.) The exploit now re-
linquishes control for good, handing control over to the
legitimate AVC Advantage program to handle all post-
election behavior. When the “Official Election Results
Report” is printed it will reflect the results as modified
by the exploit.

The AVC Advantage contains routines to check the
consistency of its internal data structures. When the data
is inconsistent, e.g., the vote totals do not match the CVR
totals, this is noted in the Results Report. The exploit en-
sures that all data structures in memory and on the results
cartridge that are checked by these routines are consistent
whenever the routines are executed.

Even after it has relinquished control, our exploit re-
mains in main memory until the machine is shut down.
Forensic analysis of the contents of the AVC Advantage’s
RAM would be a nontrivial task; nevertheless, a stealthier
exploit would wipe itself from memory before returning
control to the legitimate program. If any portion of the
exploit code is stored on a cartridge, this must be wiped
as well. Because suspicious poll workers might remove
the cartridge before it can be wiped, anything stored on a
cartridge should be kept encrypted, and the exploit code
should scrub the key from RAM if it detects that the car-
tridge has been removed.

Our vote-stealing demonstration exploit is just over
3.2kB in size, including all of the code to copy the files
and the memory cart. It fits entirely in RAM, as would
even a substantially more sophisticated exploit: There is
roughly an additional 10kB of unused heap space that
could be used. In addition, any code that is executed
only while the attacker is present need not actually stay
in the heap once it is finished and could be replaced with
additional code for modifying the election outcome.

7 Conclusions
A secure voting machine design must withstand attacks
devised throughout the machine’s service lifetime. Can
real designs, even ones with promising security features,
provide such long-term security? In this paper, we have
answered this question in the negative in the case of
the Sequoia AVC Advantage (version 5.00D). We have
demonstrated that an attacker can exploit vulnerabilities
in the AVC Advantage software to install vote-stealing
malware by using a maliciously-formatted memory car-
tridge, without replacing the system ROMs. Starting with
no source code, schematics, or nonpublic documenta-
tion, we reverse engineered the AVC Advantage and de-
veloped a working vote-stealing attack with less than 16
man-months of labor. Our exploit relies in a fundamen-
tal way on return-oriented programming, a technique in-
troduced some two decades after the AVC Advantage

was designed. In mounting the attack, we have extended
return-oriented programming to the Z80 processor.
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A Implementing the gadgets
This appendix describes the construction of a number of
the gadgets listed in Table 1. Many of the omitted ones
are quite similar to those detailed below.

A.1 A note on notation
In what follows, typewriter font uppercase letters —
e.g., A— are used to represent global variables which are
literal 16bit locations in memory. The value associated
with a variable A is written in an italic font A. Literal
numbers are written with italic font lowercase letters —
e.g., n. Z80 assembly is written in a typewriter
font with mnemonics and register names written with
bold weight — e.g., ld b,FFh. Abbreviated instruc-
tion sequence forms (see below) and the gadget pseudo-
assembly language are written in typewriter font —
e.g., b ← 0xFF and add A,B,C, respectively. In fig-
ures, nonabbreviated instruction sequences are boxed. In
Z80 assembly, hexadecimal numbers are written with a
trailing h as is customary. Otherwise, the C notation is
followed by prepending 0x.

Each box in the following figures of the gadgets rep-
resents a two-byte stack slot. Each slot contains either a
literal value — either fixed for a particular gadget or the
address of a global variable or code offset — or the ad-
dress of an instruction sequence. The literal values are
written as either hexadecimal numbers or symbolically.
Addresses of instruction sequences are represented as ar-
rows pointing to either the abbreviated form of an in-
struction sequence or the boxed text of the sequence it-
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self. Each gadget is entered by the processor executing a
ret with the stack pointer pointing to the bottom of the
gadget. The instruction sequences are executed in order
from bottom to top.

A.2 Moving data around
Any set of useful gadgets needs to contain gadgets to
move data between memory and registers as well as gad-
gets for loading registers with constant values. At a mini-
mum, this should include gadgets for loading immediates
to registers, loading from memory into registers, moving
values between registers, and storing values from regis-
ters into memory.

Loading immediate values is as simple as using in-
struction sequences like

# pop hl, de
pop hl
pop de
ret

which loads the next two stack slots into registers hl
and de. There are instruction sequences to load each in-
dividual register as well as many combinations of regis-
ters.

Loading values from memory — e.g., from a global
variable — requires loading register hl with the address
of the variable and then using one of the two sequences

# bc ← (hl)
ld c,(hl)
inc hl
ld b,(hl)
ret

# hl ← (hl)
ld a,(hl)
inc hl
ld h,(hl)
ld l,a
ret

which load the 16bit value pointed to by hl into either
bc or hl.

Once the operands are in registers, other instruction
sequences can operate on them. After the computation is
complete, the value needs to be stored back into memory.
The most common way of storing values back to memory
is to place the result in register hl and the target address
in de. Then the sequence

# (de) ← hl
ex de,hl # swap de and hl
ld (hl),e # *
inc hl
ld (hl),d
ret

will perform the store. Notice that if we use the sequence
starting at the instruction marked with * instead, we have

the instruction sequence (hl) ← de which is occa-
sionally useful as well. To store a single byte into both
the high and low byte of a variable, the following se-
quence can be used.

# (hl) ← a; (hl+1) ← a
ld (hl),a
inc hl
ld (hl),a
ret

Two simple gadgets for loading an immediate value
into a variable (li A,n) and moving the value of one
variable into another (mov A,B) are given in Figure 6.
Rather than duplicate the full text of each instruction,
common sequences are given in the abbreviated form that
appears in the comments above. The li gadget first pops
the address of variable A into register hl and the immedi-
ate value into register de. Then the value in de is stored
to the address pointed to by hl. The mov gadget is simi-
lar except that de holds the target address — the address
of variable A— while hl gets the address of variable B
and then the value B.

The three main 16bit registers bc, de, and hl are not
interchangeable as far as our set of instruction sequences
are concerned. Many operations can only be performed
using a single sequence and that sequence expects its
operands to be in particular registers. As a result, we
need a way to move data among the three registers. To
that end, we have the following three useful instruction
sequences.

# bc ← hl
ld c,l
ld b,h
ret

# de ↔ hl
ex de,hl
ld bc,1
ret

# hl ← bc
ld h,b
ld b,l
ld l,c
ld c,a
ret

The first simply copies hl to bc without disturbing any-
thing else. The other two destroy the contents of bc in
the process. For hl ← bc, one could first use the se-
quence a ← b, l ← a, and a ← c. In this way, the
contents of bc would be preserved. This is not necessary
for the gadgets we construct.

In addition to immediate loads and moves, we imple-
ment base plus offset and base plus index loads and stores
for moving data around. The base plus offset instruc-
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A

n

pop hl, de

(hl) ← de

(a) li A,n

B

A

pop hl, de

hl ← (hl)

(de) ← hl

(b) mov A,B

Figure 6: Gadgets for loading a variable A with either an immediate value n or the value of another variable B.

tions ld (resp. st) take a base register and an immedi-
ate offset which is added to the base to form the source
(resp. target) address. The base plus index instructions
ldx (resp. stx) take a base register and an index reg-
ister which are summed to form the source (resp. target)
address. The implementation is a straight-forward exten-
sion of the mov gadget and the addition gadget described
in the next subsection.

A.3 Arithmetic
We show how to perform addition. The rest of the arith-
metic and logic operations are similar, apart from the
multiplication, which is discussed below.

Addition can be performed by loading the addends
into registers, performing the addition, and storing the
result into the result variable. The following, more-
generally useful instruction sequence can be used to per-
form the last two steps, thus saving stack space.

# (de) ← hl + bc
add hl,bc
ex de,hl
ld (hl),e
inc hl
ld (hl),d
ret

The add gadget is given in Figure 7 (a).
The Z80 does not contain a multiply instruction. In-

stead, this has to be computed in software. Because mul-
tiplication is a common operation, the BIOS contains a
function which takes arguments — the multiplicands —
in registers bc and de and returns with the product in
register bc. Since register hl is used in the computation,
it is first pushed to the stack and then popped before the
function exits. The address of the instruction just after
the push hl, is the bc ← bc * de; pop hl se-
quence. To use this sequence, we need only load bc and
de with the appropriate values, taking care to load de
first since the de ↔ hl sequence sets bc as well. The
mul A,B,C gadget is given in Figure 7 (b).

A.4 Branching
In order to perform interesting and useful computation
with gadgets, they need to be able to effect a jump or
branch. Since it may not be possible to know exactly
where the return-oriented-programming stack will be lo-
cated in memory, it is preferable to write gadgets in a

position independent manner. The way to do this is to
ensure that all branching is done using relative offsets.
The pop hl instruction sequence can be used to load
hl with a suitable displacement d to the desired location.
Then the sequence

# sp ← sp + hl
add hl,sp
ld sp,hl
ret

can be used to change the stack pointer by d to point to
another gadget. In effect, changing control to the other
gadget. These two instruction sequences are exactly how
the branch gadget b label is implemented.

Without conditional code execution, a set of gadgets
can only be used to execute essentially straight-line code
using Krahmer’s borrowed code chunks technique [19]
so we must have a way to do conditional branches. Fol-
lowing a MIPS-like ISA, we implement a set less than
gadget slt A,B,C that sets A to 0xFFFF if B < C
and 0x0000 otherwise. These values act as boolean true
and false. Similarly, we implement a set not equal gad-
get sne A,B,C that sets A to 0xFFFF if B 6= C and
0x0000 otherwise.

The slt gadget is given in Figure 8 (a). It works by
first loading bc with the value C and hl with the value B.
Then the accumulator a is cleared which has the effect of
clearing the carry flag. Next, B−C is computed which
sets the carry flag if B < C. The next sequence clears c
since a is zero. The penultimate sequence has the effect
of setting a to 0xFF if B < C otherwise a is set to 0x00.
In addition, it loads hl with the variable A. Lastly, a is
stored into both (hl) and (hl+1), effectively setting
A to either 0xFFFF or 0x0000 depending on B < C or
not.

Similar to the set less than gadget, we implement a set
not equal gadget sne A,B,C that sets A to 0xFFFF if
B 6= C and 0x0000 if they are equal. The implementa-
tion is given in Figure 8 (b). It is identical to the set less
than up through the subtract. After that, it uses an in-
struction sequence that does one of two things depending
on the state of the zero flag. If B = C, then the subtract
will set the zero flag. In this case, the jr z,(pc+4) will
jump to the pop hl instruction causing hl to be loaded
with 0xFFFF and subsequently setting bc to 0x0000.
If B 6= C, then the zero flag will be cleared and pop bc
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C

A

B

pop hl, de

bc ← (hl)

pop hl

hl ← (hl)

(de) ← hl + bc

(a) add A,B,C

C

B

0xABCD

pop hl, de

hl ← (hl)

de ↔ hl

bc ← (hl)

bc ← bc * de; pop hl

hl ← bc

pop de

(de) ← hl

(b) mul A,B,C

Figure 7: Arithmetic gadgets.

C

B

A

pop hl

bc ← (hl)

pop hl

hl ← (hl)

a ← 0

hl ← hl - bc - carry

ld c,a
ret

sbc a,a
add a,c
pop hl
ret

(hl) ← a, (hl+1) ← a

(a) slt A,B,C

C

B

0xFFFF

A

pop hl

bc ← (hl)

pop hl

hl ← (hl)

a ← 0

hl ← hl - bc - carry

jr z,(pc+4)
pop bc
ret
pop hl
ld bc,0
ret

add a,c
pop hl
ret

(hl) ← a, (hl+1) ← a

(b) sne A,B,C

Figure 8: Inequality tests.

will load 0xFFFF into bc. The next instruction se-
quence will add c to the accumulator which was previ-
ously set to zero, thus setting a to either 0xFF or 0x00
and load hl with the variable A. The final sequence sets
A appropriately.

While not strictly necessary, a set equal gadget is eas-
ily constructed by adding the following sequence which
sets the accumulator to its one’s complement.

# a ← ~a
cpl
or a
ret

Once we have boolean values 0xFFFF and 0x0000,
we can perform conditional branches by taking the bit-
wise conjunction of our boolean value and the branch
offset. Due to the interactions between the registers in the
available instruction sequences, performing the conjunc-
tion is tricky since the only conjunction we have avail-
able uses the accumulator and register c. Even worse, it
modifies register bc in the process. Once we have com-
puted the conjunction of a single byte, we need to place it
into either register h or l depending on it being the high
or low byte of the conjunction, respectively. The follow-
ing three instruction sequences perform the the conjunc-
tion and the loading of h and l.

# a ← a & c;
# bc ← bc-1
and c
dec bc
ret

# l ← a
ld l,a
ret

# h ← a;
# l ← l + 1
ld h,a
inc l
ret

Since the sequence for moving the value from the accu-
mulator to h increments l, we need to load h before we
load l.

The branch if true gadget btr A,label which
branches to label if A = 0xFFFF is given in Figure 9.
If the offset from the end of the gadget to label is d,
then let d′ be the byte reversed value of d. The btr gad-
get starts by loading d′ into bc. Since this value is byte-
reversed, register c contains the high-order byte of the
offset d. The boolean variable A is also loaded into de.
The low-order byte of A is loaded into the accumulator
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d′
A

pop bc, de

ld a,(de)
ret

a ← a & c; bc ← bc - 1

bc ← bc + 1

h ← a; l ← l + 1

ld c,b
add a,d
ret

ld a,(de)
ret

a ← a & c; bc ← bc - 1

l ← a

sp ← sp + hl

Figure 9: btr A,label. The immediate value d′ is
the byte-reversed offset d from the end of the gadget to
label.

and the bitwise conjunction with c is stored into the accu-
mulator. Since bc was decremented, the next instruction
sequence increments it. The accumulator is then stored
into h and b— the low-order byte of d — is moved into
c. The accumulator is again loaded with the low order
byte of A, the conjunction is performed and the result
placed in l. At this point, hl contains the bitwise con-
junction d & A. If A = 0xFFFF, then the next sequence
will branch to the offset d. If A = 0x0000, then the next
sequence will do nothing.

By inserting two a ← ~a instruction sequences after
the two a ← (de) sequences, a branch if false gadget
bfa A,label is constructed. Once we have the slt,
sne, btr, and bfa gadgets, we can perform conditional
branches using numerical equality and inequality. We
thus have a Turing-complete set of gadgets.

A.5 Functions
To support a more natural imperative style of program-
ming, we implement return-oriented function calls. The
return-oriented nature of our program means that the call
stack is unavailable for use with return-oriented func-
tions since our code resides on the stack. Instead, we
need to designate a variable SP as a stack pointer for use
with the stack manipulation gadgets push, pop, call,
and ret.

Following the convention of the Z80, a push SP,A
gadget first decrements SP by 2 and then stores A to (SP).
A pop SP,A gadget first sets A to (SP) and then incre-
ments SP by 2. The call SP,label gadget computes
the address of the following gadget and pushes that onto
the stack pointed to by SP and then branches to label.
Finally, the ret SP gadget pops a value off of the stack
and branches to it. The call gadget uses the sp ←
sp + hl instruction sequence with register hl set to
0x0000 to move the value of sp into hl in order to
compute the address of the following gadget to push on
the stack. The rest of the call and ret gadgets are
straight-forward and given in Figure 10. The push and
pop gadgets are similar.

B An example return-oriented program

.var sp,0xF000

.var array,0xF002 # saved

.var left,0xF004 # saved

.var right,0xF006 # saved

.var temp1,0xF00A # not saved

.var temp2,0xF00C # not saved

.var index,0xF00E # not saved

.var i,0xF010 # not saved

.var pivot,0xF012 # not saved
qsort: # void qsort( array, left, right )

push array
push left
push right
pet
ld left,10(sp)
ld right,12(sp)
slt temp1,left,right
bfa temp1,cleanup
ld array,8(sp)
ldx pivot,array,right
mov index,left
mov i,left

loop:
slt temp1,i,right
bfa temp1,break
ldx temp1,array,i
slt temp2,pivot,temp1
btr temp2,continue
ldx temp2,array,index
stx temp2,array,i
stx temp1,array,index
addi index,index,2

continue:
addi i,i,2
b loop

break:
ldx temp1,array,index
ldx temp2,array,right
stx temp2,array,index
stx temp1,array,right
addi temp1,index,-2
push temp1
push left
addi left,index,2
push array
call qsort
addi sp,sp,6
push right
push left
push array
call qsort
addi sp,sp,6

cleanup:
pop right
pop left
pop array
ret
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SP

SP

0xFFFE

0x0000

0x000C

d

pop hl, de

bc ← (hl)

pop hl

(de) ← hl + bc

pop hl

sp ← sp + hl

pop bc

(de) ← hl + bc

pop hl

sp ← sp + hl

(a) call SP,label. The im-
mediate value d is the offset from
the end of the gadget to label.

SP

SP

0x0002

pop hl, de

bc ← (hl)

pop hl

(de) ← hl + bc

hl ← bc

hl ← (hl)

ld sp,hl
ret

(b) ret SP

Figure 10: Function call and return gadgets.

As an example of performing general purpose compu-
tation, the preceding return-oriented function performs
the Quicksort algorithm on its input using the gadgets
from Table 1. This example “pets” the watchdog timer
to keep it from firing in the middle of computation and
causing a non-maskable interrupt.

Notes
1A related notion to long-lasting security is Moran and

Naor’s “everlasting privacy” requirement for crypto-
graphic voting schemes [20], itself based on Aumann,
Ding, and Rabin’s “everlasting security” [5].

2A Harvard-architecture machine has separate data and
instruction memories, in contrast to a von Neumann-
architecture machine, which has a single memory for
both instructions and data.

3Even in Francillon and Castelluccia’s attack on a
Mica sensor-network node [13], return-oriented pro-
gramming — or, more properly, chunk borrowing à la
Krahmer [19], since Turing-completeness is not neces-
sary — is used only to fill a staging area with native code
that will be installed on reboot by the bootloader.

4See, e.g., Sequoia’s response to the Top-to-Bottom Re-
view: “In short, the Red Team was able to, using a finan-
cial institution as an example, take away the locked front
door of the bank branch, remove the security guard, re-
move the bank tellers, remove the panic alarm that no-
tifies law enforcement, and have only slightly limited
resources (particularly time and knowledge) to pick the
lock on the bank vault” [25].

5Now Premier Election Solutions.
6Following the “Chinese wall” protocol, the simulator

developers had no access to the actual hardware and re-
lied exclusively on our published specifications.

7The name of a segment is contained within the seg-
ment and there is a field in the segment header which
points to the name.

8It is possible to install a 32kB “Program” SRAM and
map the 16kB–32kB address range to either of the two
16kB aligned regions of the SRAM, but no AVC Ad-
vantage used in elections has such a Program SRAM in-
stalled [26].

9The gadgets could be made more efficient by not writ-
ing values back to memory except as needed. This would
significantly complicate hand crafting return-oriented
code, but this sort of optimization is well-understood in
the compiler-writing community; for example, register-
allocation algorithms [1]. This sort of optimization can
lead to a drastic reduction in return-oriented code size
and run time.
10The AVC Advantage has two Logic and Accuracy
Testing phases which are meant to test that the voting
machine is in working order. The pre-LAT phase always
happens prior to the election and a post-LAT phase may
occur after the election, depending on policy.
11This is actually a configuration option. Any machines
configured to allow the polls to be closed without any
votes cast can skip the vote casting step. In this case,
there is no need to modify the protective counter later,
simplifying the exploit somewhat.
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