Modeling and Analysis of Procedural Security in (e)Voting:
the Trentino’s Approach and Experiences

Komminist Weldemariam**
2 University of Trento
Via Sommarive, 14 Povo (TN) 38100
Trento, Italy
sisai@fbk.eu

Abstract

This paper describes the experiences and the challenges
we are facing within the ProVotE project, a four years
project sponsored by the Autonomous Province of Trento
that has the goal of switching to e-voting for local elec-
tions. One of the activities we are carrying out within
ProVotE is the systematic analysis of the weaknesses
and strengths of the procedures regulating local elections
in Italy, in order to derive possible attacks and their ef-
fects. The approach we take is based on providing formal
specifications of the procedures and using model check-
ers to help us analyze the effects of attacks. We believe
such an analysis to be essential to identify the limits of
the current procedures (i.e. under what hypotheses at-
tacks are undetectable) and to identify more precisely
under what hypotheses and conditions we can guaran-
tee reasonably secure electronic elections. This paper
presents the methodology and the techniques we are de-
vising and experimenting with to tackle problem high-
lighted above.

1 Introduction

The organization of an election in Italy involves various
offices of the Public Administration and private contrac-
tors, has a time-span of months, and has strict security
and traceability requirements. Sensibility by citizens and
politicians is very high, and litigation over, e.g., imple-
mentation of procedures and validity of results are not
uncommon. As an example, one of the major candidates
at the last general elections in Italy distributed — via
the website of his party — a leaflet describing possible
misconducts of poll-officers during elections and some
counter-measures. The goal of the leaflet was help en-
suring that poll-officers of the opposing party could not
try and illegally alter the results of the election.

We are involved in a project named ProVotE [1] that
it is related to the evaluation and possible introduction

Adolfo Villafiorita'
! Fondazione Bruno Kessler
Via Sommarive, 18 Povo (TN) 38100
Trento, Italy

adolfo@fbk.eu

of e-voting for local elections held in the Autonomous
Province of Trento, Italy. The e-voting system developed
within the project has been used with experimental value
by more than ten thousand citizens and with legal value
in two small elections, making the initiative the largest
experimentation of e-Voting in Italy, so far. The switch
to electronic elections in Italy, however, is a long and
difficult process, that requires extreme attention to all the
aspects characterizing an (electronic) election, including
a thorough understanding of the limits and the security
breaches that are inherent in the procedures and/or that
derive from a combination of procedures and systems
adopted.

Therefore, one of the concerns of our work is under-
standing how the switch to the new technology changes
security risks, with the ultimate goal of defining the laws
and the procedures regulating electronic elections, that
guarantee the same level or a higher level of security. In-
terestingly, paper voting and the procedures regulating
paper elections are not immune to attacks, which can
usually be carried out under the hypothesis of multiple
“failures”. For instance, if a ballot is stolen before the
election and the polling officers do not report it, it is
possible to control how voters vote in a polling station.
The usage of electronic devices, however, shifts and “re-
shapes” some of the risks (see, e.g., [2, 3, 4, 5, 6, 7]).

Various approaches for specifying, modeling, analyz-
ing, and assessing security have been proposed in the
past and have been proven useful for zeroing the secu-
rity lacks of the software systems under analysis (see,
for instance, [8, 9, 10, 11]). However, these techniques
are less or otherwise not effective in what we call proce-
durally rich scenarios, namely situations in which soft-
ware systems are just part of a more complex organiza-
tional setting, in which procedures have to be executed
on security-critical assets (belonging both to the digital
and to the physical realm). This is exactly the case of
(voting and) e-voting, in which even in those countries
that have adopted a high level of automation, the execu-

tions of procedures and controls, carried out by people
on physical assets (e.g. printouts of the digital votes),
remains a necessary and unavoidable part (for instance,
see detail analysis and evaluation report of the EVER-
EST project [7]).

We are approaching the problem by reasoning about
the procedures and controls that regulate the usage of
e-voting systems. We do so by providing formal models
of the procedures, by “injecting” threats in such models
and by analyzing, through the help of model checkers,
the effects of such threats. We believe such an analysis to
be essential to, first, identify the security boundaries, that
is, the conditions under which procedures can be carried
out securely and, secondly, to devise a set of requirement
to be applied both at the organizational level and on the
(software) systems used.

This paper is structured as follows. In the next sec-
tion we introduce the ProVotE project, within which this
work has been developed. In Section 3, we describe the
context of procedural security in detail. In Section 4, we
describe our methodology for procedural security analy-
sis and illustrate the approach with snippet example. Sec-
tion 5 discuses some related work and finally we draw
our conclusion in Section 6.

2 The ProVotE Project and Motivations

ProVotE [1]!, a project sponsored by Provincia Au-
tonoma di Trento (PAT), has the goal of ensuring a
smooth transition to e-voting in Trentino, eliminating
risks of digital divide and providing technological solu-
tions which support, with legal value, the phases ranging
from voting to the publication of the elected candidates.

The project includes partners from the public admin-
istration (PAT, Regione Trentino/Alto-Adige, Consorzio
dei Comuni Trentini, Comune di Trento, IPRASE), re-
search centers and academia (Fondazione Bruno Kessler
(FBK), Faculty of Sociology of the University of Trento,
Fondazione Graphitech), and local industries (Informat-
ica Trentina) and is co-led by the Electoral Service of
the Autonomous Province of Trento and by FBK-IRST.
Project leadership by the Public Sector, in our opin-
ion, among other advantages, helps tackling the issue
of potential conflicts of interests by private industries;
see e.g. [12]. The technological solution (both soft-
ware and some hardware components) has been devel-
oped in house, providing integration with some commer-
cial components.

The project is multi-phased and is organized in vari-
ous lines of activities that strictly interact. For instance,
in the first phase of the project, some functional and non-
functional requirements of the e-voting prototype have

Thttp://ed fbk.eu/index.php/EVoting/HomePage

been provided with a strict round-trip between the soci-
ological and the technological line, with the normative
line ensuring compatibility with the electoral laws. See
[1, 13] for more details and [14] for some considerations
related to the sociological aspects of e-voting in Europe.
Development proceeds incrementally, and each phase de-
fines milestones to check the goals set in each different
line.

The first phase had the goal of testing prototypes, eval-
uating acceptance by citizens, ease of use, and some or-
ganizational aspects. Verification of the results achieved
in the first phase was conducted through four different
trials (May 2005, November 2005, May 2006, Novem-
ber 2006) held during local elections. During the exper-
imentation polling stations were equipped with one or
more e-voting machines and citizens were asked to vote
on paper, repeat their vote using the electronic systems,
and provide feedback about the system to interviewers.
About ten thousand citizens took part in the first phase
of the project. (With the first experimentation having the
lowest participation, due also to the fact that we had one
e-voting machine per polling station. In subsequent ex-
perimentations we equipped most polling stations with
two machines and got higher participation?).

During the second phase of the project we used the
electronic systems in two elections, with legal value. The
first election was the election of student representatives
in a local high school and it involved 1,298 students. The
second election — conducted in the towns of Campo-
longo al Torre and Tapogliano in Friuli-Venezia Giulia
(November 2007), a neighboring region with autonomy
similar to that of PAT — was a poll to unify the two mu-
nicipalities; 561 people used the systems. In both cases,
logistics, procedures, and laws governing the elections
were relatively simple and can be considered a simpli-
fied version of the other kinds of elections we intend to
use our systems for.

For the third phase of the project, which will lead to
a large-scale introduction of the new voting system, as-
pects related to procedures, logistics, and organization
become more relevant, as they will serve both as the basis
for the deployment of the solution and for the definition
of the laws that will govern the electronic election.

To our knowledge, little has been done in Italy to try
and introduce e-voting. We are aware of one eletronic
election, with legal value, in Valle d’Aosta, that it in-
volved a small number of voters. The election remained
an “isolated” case and little or no information is avail-
able on the matter. With respect to scope, population,
and participation, ProVotE is among the largest, if not

2Detailed results of all the experimentations and elec-
tions conducted within the ProVotE project are available
on the Internet at: http://www.provincia.tn.it/elezioni and
http://referendum?2007.regione.tvg.it/index.html.

the largest, e-voting project in Italy.

3 Procedural Security Analysis

Procedures in an election system are best practices man-
dated by law locally (within the province) or at the coun-
try level. These practices are intended to ensure that
elections is carried out correctly and securely. From a
practical point of view, procedures are often as impor-
tant as the technical security features of the systems used
in elections, since procedures define how critical assets
are to be managed, elaborated, and transformed.

During elections, incorrect or malicious “deviations”
from the procedures defined by the law may results in vi-
olations of fundamental rights of citizens (e.g. secrecy of
vote) or, even, in threats to the integrity of electoral data
and of the election results. Lawmakers, therefore, need
to carefully consider and analyze what happens when
a procedure is not followed as prescribed and have to
define mechanisms to ensure that violations can be de-
tected.

We are interested in providing methodologies and
tools to help assessing security of procedures and the ef-
fects of deviations from the “nominal” behaviors, with
the goal of highlighting security vulnerabilities. Proce-
dural security, therefore, deals with the identification,
modeling, establishment, and enforcement of security
policies about the procedures that regulate the usage of a
system and system processes. The breach of security ob-
jectives during the execution of the procedures is known
as threat to the procedures (or procedural threats). We
call procedural security analysis the process of under-
standing the impact and effects of procedural threats,
namely courses of actions that can take place during the
execution of the procedures, and which are meant to al-
ter, in an unlawful way, the assets manipulated by proce-
dures.

environment Q ?

1

organization's procedures

v 2| |4
sw system

sw system

asset asset asset asset asset

Figure 1: Procedural Security Analysis

The situation is depicted in Figure 1. Our target of evalu-
ation is a (complex) organizational setting in which pro-
cedures transform and elaborate assets, which may not

necessarily be just digital (e.g. a printed ballot). The
procedures are meant to add value to the assets and to
protect them from attacks, which can either come from
external sources or from insiders. In particular, we dis-
tinguish the following kinds of attacks:

1. Attacks on digital assets (item 1 and item 3 in Fig-
ure 1). These kinds of attacks are meant to alter one
or more of the digital assets of an organization. At-
tacks can either be carried out from external sources
(the environment) or from internal sources. Oppor-
tunities for attacks are determined by the organiza-
tional setting and by the security provided by the
digital systems.

2. Attacks on other kind of assets (item 2 and item 4
in Figure 1). These attacks are meant to alter one
or more of the non-digital assets of an organiza-
tion. Attacks can either be carried out from external
sources (the environment) or from internal sources
or a combination of both that it forms coordinated
attacks. Opportunities for attacks are determined by
the organizational settings only.

Security assessment (like [8, 10]) usually focuses on un-
derstanding items 1 and 3, namely, types and effects of
attacks on (software) systems. In the next section we pro-
pose a tool-supported methodology to tackle also points
2 and 4 above, namely types and effects of attacks on as-
sets that are not (necessarily) digital and that derive from
the way in which procedures are implemented and car-
ried out.

4 The Methodology and a Case Study

4.1 The Methodology

We devise the following methodology to perform our
analyses (See also Figure 2):

The first step consists of providing (business) models
of the procedures under evaluation (Step 1 of Figure 2).
These models are meant to describe the process or the
processes to be analyzed, and to define how assets are
elaborated and transformed by such procedures. In or-
der to ease the task of translating the models into exe-
cutable specification, we decided to stick to a subset of
the UML, that allows us to describe the domain concepts
in a strict and defined way (see [15]). The model con-
tains information about the procedures (workflows), the
assets used, their features, and the actors and their role
when participating to different workflows.

So far we managed to provide UML models of
the electoral procedures in place in the Autonomous

Step 1. Model Step 2. Extend
Procedures Maodel

Step 3. Encode Step 4. Encode
Asset Flows Properties

Step 5. Perform
Analyses

Step 6. Analyse
Results

@®

Figure 2: The process of formal procedural security.

Province of Trento and in Regione Friuli Venezia Giu-
lia. We use Visual Paradigm 3 as our reference modeling
tool. See [16, 17] for more details about the notation,
tool support, and the model themselves.

The second step consists of “injecting* threat actions
into the model and generate what we call extended
model (Step 2 of Figure 2). A threat is an action that
alters some features of an assets or allows some actors
privileges (e.g. a “read” privilege) on some assets. Thus,
in the extended model, not only assets are modified ac-
cording to what the procedures define, but they can also
be transformed by the (random) execution of one or more
threat actions. Since attacks depend on what threat-
actions are carried out, the effectiveness of the analy-
sis depends upon the threat actions that are defined and
the injection strategy that is chosen. With respect to the
first point (threat action), we allow attackers any possi-
ble privilege and action to assets. With respect to the
second point, it turns out that the best and most general
strategy is that of injecting all possible threat-actions at
all possible steps of the nominal procedures (the model
checker will then take care of “pruning” useless threats,
namely threats which do not lead to any successful at-
tack). The construction of the extended model, whose
generation can be automated, is currently performed by
hand.

The third step is encoding the asset model into executable
specification (Step 3 of Figure 2). From the extended
models defined at the previous step we derive executable
specification that define how each asset is manipulated
by the procedures. Asset flows are represented in the

3http://www.visual-paradigm.com/

NuSMYV input language [18]. The NuSMV model of the
asset flows is based on the definition of “program coun-
ters” that ensure that procedures are executed according
to the specifications, and by defining one module per as-
set with one state variable per asset-feature. The state
variables encode how features change during the execu-
tion of the procedures. Accessory information, such as
actors responsible for the different activities can be used,
e.g., to express security properties, which, in turn, are
verified against the asset model.

The fourth step is specifying security properties to model
check. The specification of the desired (procedural) se-
curity properties, namely, the security goals that have to
be satisfied are then encoded using LTL/CTL formula.
Asset flows and security properties are then the input to
NuSMV.

In step five (Step 5 of Figure 2) we perform analyses,
namely, we run the model checker and collect results
(counter-examples). Counter-examples of security prop-
erties found by the model checker encode sequences of
actions that, if executed, pose a threat to security of
one or more assets. In standard situations, the counter-
example will contain the execution of one (or more) asset
threat. A counter-example in which no asset threats need
to be executed would show an inherent weakness in the
nominal workflows or, otherwise, an error in the specifi-
cations.

The last step consists in analyzing the obtained results
(Step 6 of Figure 2), by looking at the counter-examples
generated by the model-checker. In particular some of
the information we are interested in is:

1. The Actor-Play-Role namely, the roles actors have
in the execution of the attack and the privileges they
get on assets.

2. Reachability the sequence of actions leading to the
violation of a security goal, with particular respect
to the execution of asset-threats.

This step allows us to achieve two goals. First, it al-
lows us to understand what are the hypotheses and con-
ditions under which a given security goal is achieved
or breached. Second, it provides information to try and
modify the existing procedures, so that security breaches
can be taken care of.

The analysis approach we take is very similar to that
of FSAP/NuSMV-SA [19], for safety analysis, whereby
a system specification is “enriched” with information
about faults and analyzes are carried out to understand
the effect and impact of faults on safety requirements ex-
pressed in the form of LTL/CTL formulae. Analogously
to what happens in safety analysis when analyzing, e.g.,

Password
[piain]

(=)

)

electionSW
fencrypted]

MemarySupport
loaded]

FIN
[plain]
Envelope
[loaded]

¥

Envelope
[loadad]
(. k

electionSW
[piain]

MemarySupport
fempty]

N
&

Electoral Service

TN
-3
H
g

Messenger

electionSW
[encryptec]

FIN
[piain]

Polling Station Officer

Figure 3: An example of asset flows

the loss of a critical functions, enhancing the procedures
results in reducing the probability of an attack or making
the attack more complex, rather than eliminating it.

4.2 The Case Study

In this section we illustrate the methodology through a
simple snippet example, which is derived from the pro-
cedure in place for e-voting experimentations. Note that
this work is the extension of the work presented in [15].

4.2.1 Model Procedures and Inject Threats

A subset of UML diagrams is used to model (an excerpt
of) the procedure that is followed during project trials
for delivering the voting software to the polling stations
(See Figure 3). The diagram shows how, before the elec-
tion, the Electoral Office encrypts the e-voting software
and creates a memory support which contains the final
software release. The responsible person at the Electoral
Office then prepares an envelope with the PIN code (that
it is used to activate the voting functions) and the mem-
ory support. A messenger (e.g. a police officer) takes
the envelope and delivers it to the polling station, where
the polling officers, once verified that the enveloped is
sealed, open it, insert the memory support in the voting
machine, insert the PIN and start the voting operations.

In order to analyze possible threats to this procedure,
we inject threats into the model of the procedures and
generate the extended model. Figure 4 depicts the ex-
tended model resulting from the injection of some delete
and replace threat actions in the example of Figure 3

(threat actions are stereotyped with the “threat-action”
stereotype and marked in color). Note that the seman-
tics of delete and replace actions may slightly vary when
applied to different kinds of assets.

Attack 1

M electionSW

Password electionS\W
[plain]

[plain] [plain] ‘
MemorySuppart <sthreat-action==
(=) =)

h M elect
(oad j (replace j'{ enerypred] ‘ Tencrypted]
\)‘h
Envelope MemarySupporl
Lempty] [leaded)
[ond

<sthreat-actionz PIN
replace plain]

} MPIN
[plin]

Electoral Service

Attack 2

Envelope
Tloaces]
Y =<dhreat-action=> ||
‘# \ delele J

ship Attack 3

Messenger

=<hreal-aclion=>]
/ delele

Envelope
[loacec]

electianSW
[enarypted]
PIN
Iplain]

Palling Station Officer

Figure 4: An example of extended model

4.2.2 Model the asset-flow in NuSMV

The next step is modeling the asset flows into executable
NuSMYV specification. In particular, the translation is
performed as follows:

1. we define a module that “works” as the “program
counter”, that is, it encodes the sequence of actions
defined by the workflow. The “program counter”
ensures that the order in which activities are exe-
cuted (let them be “nominal” or the execution of
“threat actions”) is the one defined by the UML di-
agrams.

2. we define a module for each asset that it is specified
in the UML diagram. Assets have features (proper-
ties): each feature of the asset is defined as a state
variable of the module encoding the asset. The tran-
sition from one asset state to the next is determined
by the “program counter” (which represents the ex-
ecution of an action of the workflow) and some ac-
cessory information such as role(s) (which encodes
the relationship between the workflow activity and
actors who are assigned to perform the execution of
the workflow).

3. finally, we define some boolean variables to capture
malicious asset flows and the execution of threat ac-
tions.

For instance, the following snippet of code defines
the asset type electionSW and some of its fea-
tures, named status (that is, the states in which the
electionSW can be), value (the relative weight of
an asset assigned based on the criticality of the as-
set, basically the analyst decide and assign this value),
and content (that is, the qualitative value of the
electionSW can be).

MODULE electionSW (...)
VAR

status : {plain, encrypted};
value : {novValue, lowValue,
highValue, inf};

content : {sw,esw,eesw};

Similarly, other modules with their corresponding fea-
ture variables are declared (e.g., MODULE Key (...),
MODULE memorySupport (...)). “Accessory”
information (not strictly necessary to execute the work-
flows), such as the actors responsible for each activity,
is encoded in the model through DEFINEs in the main
module, such as in the following snippet:

DEFINE
ElectoralServiceActive := pc.pc =
loadMemSup || [...]

Evolution of assets’ properties are encoded using state
machines, which are encoded in NuSMYV with the next
construct (which specifies the value of a variable at step
n + 1, given the value at step n). Notice that asset
flows are defined both in terms of the “program counter”
(e.g. the current step of the workflow) and the value
of the asset features. Figure 5 shows a model of fea-
ture content variable of electionSW asset where
it’s state changes according to the program counters and
some other variables; its corresponding snippet NuSMV
code is also given below:

[...]

sw : soltware

esw 2 encrypted sw

eesw : enveloped esw

sl

po.pe =

pe.pe = openEnvelope

pe-pe = decrypt
&8 swkey =

key.content

encrypt

Sepe =
s2 .
prepareEnvelope &&
next{pe.pc) =

loadEnvelope

Figure 5: A simple example of state transition model for

content feature of electionSW.

N

sl

meSW : malicious eSW

meeSW : malicious eeSW

pope=

pe.pe = openEnvelope
pe.pe = decrypt

&& swkey =

key.content

encrypt

<2 he.pe =

/ prepareEnvelope & &
/

/ > - <} =
pe.pe = decrypt / next(pepe) =
h

&& swkey 1=

1 load Envelope
key.content

‘l mal SW && pe.mpe

| = replaceSW

.54 /

gavbage

s6 % @ N,
\ 55

pe.pe = decrypt

Figure 6: An extension of Figure 5.

= esw)

reesw;

pc.pc =decrypt &&POfficersActive
&& (status = encrypted

|| content = esw) && !fakeKey
1sw;

[...]

Note that in the code above we have left some detail spec-
ification (such as location) for the matter of presentation
purpose.

Threat injection (model extension) corresponds to

next (sw.content) := case
(pc.pc = encrypt &é&
content = sw) ||
(content = eesw &&

pc.pc = openEnvelope &&
POfficersActive)

:esw;

(pc.pc = loadEnvelope &&
(TechnicianTwoActive ||
ElectoralServiceActive) && content

augmenting the state machine of the asset flow with new
transitions corresponding to the execution of threat ac-
tions. Figure 6, for instance, shows an asset flow with
some threat actions that may alter a feature of an asset
(e.g. content), in some undesired way.

The triggering of a threat action is “monitored”
through boolean variables that are set to true when the

action takes place, as illustrated by the following pieces
of code. We first declare one boolean variable per threat:

can_mesw, can_meesw: boolean;
can_garbageSW: boolean;
can_mPPin, can_mePPin: boolean

The above variables are initially set to false. When a
variable is set to true (either because constrained to do
so by the model or, more often, at random®), a transition
in the state machine encoding the asset flow is triggered
and the value of the asset flow changed according to the
threat-action (rather than to the nominal flow), as illus-
trated by the following piece of code:

next (can_mesw) := case

(malS && pc.mpc = replaceS &&
(next (pc.pc)=loadMemSup))

|| (can_meesw && pc.pc =
openEnvelope)

HuR

1l: can_mesw;

esac;

4.2.3 Represent properties and Model Check them

After encoding the relevant information of asset-flows,
we specify security properties using LTL/CTL formu-
lae. We use LTL (Linear Temporal Logic) to reason on
the computational path scenarios of an asset (e.g., what
can happen as asset travels along different locations) and
CTL (Computational Tree Logic) to reason about the ex-
istence of specific states (e.g., is there any particular state
in which an asset can be altered in an undesired way).

In the example we have shown (in the extended
model), for instance, it is possible to implement at least
three different attacks. The first one consists in re-
placing the software which is sent to the polling sta-
tions. By reading the key (or name it also password)
with which the electionSW is encrypted and sub-
stituting a modified version of the software in the
MemorySupport it is possible, for a malicious actor,
to deliver a modified copy of the software to the polling
station. The second one consists in replacing the PIN.
A malicious actor with access to the PIN code may sub-
stitute the PIN which is loaded in the envelope and
thus, have a wrong PIN delivered to the polling station
(eventually causing a denial of service — namely the vot-
ing functions cannot be activated by the polling officers).
The third attack consists in deleting (or destroying) the
envelope during transportation, possibly causing an-
other denial of service.

Below we show two examples of properties that allows
us to highlight such attacks.

4Corresponding to modeling that threats can take place at any time

o | 4 153 151 Ly 16] (ST
pe.pe — | — | encrypt | loadMem | preEnv | .. | openEnv | decrypt
sw.content sW garbage | ...
malSW 1 T L
replaceSW €1 T 1
SW.CAMN_TESW 1 T
sw.can_garbage | L T
SW.is_sw T L

Figure 7: Example 1: A counter-example showing the
alternation of election software at poll station.

i) Delivery of election software. In this example, we want
to check that: "It is never the case that poll officers re-
ceive an altered version of the election software that can
be run on the machines”. In other words, we want to
verify that the procedures guarantee the integrity of the
software. The property is specified in CTL as:

AG ! (sw.content = garbageSW &&
sw.location = pollStation &&
PollOfficersActive)

When checking the above property on the extended
model with NuSMYV, the property proves to be false —
namely, it is possible for an attacker to have delivered
the wrong software to the polling stations . The gen-
erated counter-example is shown in Figure 7. The key
point here is that, by having access to the password to
encrypt the software and by being able to substitute the
software before it is put in the envelope, a modified or
useless version of the software can be delivered to the
polling station (See 7 for the NuSMV counterexample in
which the malSW and replaceSW variables set to true
highlight the execution of threat actions).

The counter-example thus highlights a possible attack
and the resources that are needed to carry the attack
out. Based on this information, analysts can try and sug-
gest possible counter-measures. In the example we have
shown, the attacks can be performed by having access
to two assets (password and election software), when the
assets are under the responsibility of the Electoral Office.
The information provided by the counter-example, thus,
allows analysts to focus on what assets need to be pro-
tected or on where additional controls are more effective
to detect the attack.

ii) Denial of Service. In this case, we are interested in
checking whether a denial of service attack could happen
in a polling station. As an example, consider the follow-
ing property: "It is never the case that poll officers get
the wrong PIN code”. (Notice that the PINs are used by
poll officers to activate the voting machines and voting
functions.) This property is expressed in CTL formula
as:

AG ! (PIN.can_garbage && PIN.location

o . 11 i1 17 I Ti]
pe.pe w. | preEnv | loadEnv openEnv
malPiN 1 T 1
replacePiN 1 T 1
pinReady 1 T
can_mPPiN 1 T
pin.can_garbage | L T

Figure 8: Example 2: Denial of service attack counter-
example.

= pollStation)

We give the above property on the extended model to
check that the property holds. However, the tool gener-
ates the counter-example depicted in Figure 8.

The attack is similar to the previous: during the prepa-
ration of the envelopes with software and PINs, a PIN is
replaced with a wrong one, as shown by figure 8. Once
again, the information can be used by analysts to devise
counter-measures.

The examples, although trivial, show how — by reason-
ing on the extended model — it is possible to explicitly
represent the attacks that can be carried out, determine
what assets are needed by the attackers and when, and
who can carry the attacks. Similarly to what happens in
model checking, we do not provide any quantitative in-
formation about the likelihood of the attacks. However,
even in this simple case, we believe that the output of
the attacks can provide experts the information and the
requirements to enhance the current procedures, to elim-
inate certain attacks or, at least, to make them more dif-
ficult to implement.

5 Related Work

Various approaches for specifying, modeling, analyzing,
and assessing security have been proposed in the past
(see, for instance, [8, 9, 10, 11]). These approaches
mainly focus on ways to build secure (software) sys-
tems by providing methodologies and techniques to de-
velop and analyze systems, subsystems, and their execu-
tion environment. However, in procedural rich scenario,
namely in situation in which security breaches may be
carried out on outputs and assets which may be produced
by ICT systems, (most of) the proposed approaches do
not fit well.

To our knowledge, so far, formal procedural security
analysis is quite an unexplored area. However, various
work have been going on the representation and effec-
tive implementation of e-voting procedures using busi-
ness process notations. In this area, the work closest in

spirit to ours can be found in [20, 21], where the authors
argue the need for procedural security in electronic elec-
tions and provide various examples of procedural risks
occurred during trials in UK. The same authors in [22]
also investigate the need for applying business process
re-engineering to electoral process. Our focus, however,
is on the technical machinery to automate analyses.

In [23, 24], the authors stress the importance to define
roles and responsibilities within the e-voting process in
order to come with a better understanding of electoral
processes. Our approach complement and possibly ex-
tend these works by providing tools to support such anal-
yses.

Last but not least, Volha et al. [25] presented an ap-
proach to reason on security properties of the fo-be mod-
els (which are derived from as-is model) in order to eval-
uate procedural alternatives in e-voting systems. In par-
ticular, using formal approach (using Datalog [26] and
its underlying theorem prover) they express and verify
security concerns (such as, delegation of responsibility
among untrusted parties, trust conflict and so on). The
aim is that of understanding problematic trust/delegation
relationships and eventually finding ways to adopt a so-
lution to the detected security properties violations.

6 Conclusion and Future Work

This paper described a methodology to perform proce-
dural security analysis based on explicit reasoning on as-
set flows — notably, by building a model to describe the
nominal procedures under analysis and, injecting pos-
sible threat actions (by assuming that any combination
of threats can be possible in all steps) into the model.
We also outlined encoding strategies using NuSMV in-
put language —that it is amenable for formal analysis
allowing to reason on different properties about the pro-
cedure on the extended model such as, the ’actor-play-
role” principle and “reachability” of (un)desired state of
an asset.

Among the advantages, a structured approach to ana-
lyze security of procedures and a general threat injection
strategy that allows a high level of generality in defin-
ing the attacks. The usage of model-checkers, more-
over, allows for reasoning about threat composition and
to highlight, e.g. the level of coordination and resources
required to carry out certain attacks.

The work presented in this paper is on-going. Among
the areas of development we mention automation (e.g.
algorithms to automatically perform threat injection) and
better tool support. Another area of interest relates to
provide guidelines that can be incorporated in the Com-
mon Criteria [27], both methodologically and tool sup-
ported way to automate the analysis.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

Adolfo Villafiorita and Giorgia Fasanelli. Tran-
sitioning to e-Voting: the ProVotE Project and
the Trentino’s Experience. In EGOV-06, Krakow,
Poland, 2006.

Bernard van Acker. Remote e-Voting and Coercion:
a Risk-Assessment Model and Soluions. In Prosser
and Krimmer [28], pages 53-62.

T. Kohno, A. Stubblefield, A.D. Rubin, and D.S.
Wallach. Analysis of an Electronic Voting System.
In IEEE Symposium on Security and Privacy, 2004.

J W. Bryans, B Littlewood, P Y. A. Ryan, and L St-
rigini. E-voting: Dependability Requirements and
Design for Dependability. In ARES ’06: Proceed-
ings of the First International Conference on Avail-
ability, Reliability and Security, pages 988-995,
Washington, DC, USA, 2006. IEEE Computer So-
ciety.

Matt Bishop and David Wagner. Risks of e-voting.
Commun. ACM, 50(11):120-120, 2007.

Ryan Gardner and Sujata Garera and Aviel D. Ru-
bin. On the Difficulty of Validating Voting Ma-
chine Software with Software. In EVT’07: Pro-
ceedings of the USENIX/Accurate Electronic Vot-
ing Technology on USENIX/Accurate Electronic
Voting Technology Workshop, pages 11-11, Berke-
ley, CA, USA, 2007. USENIX Association.

P. McDaniel, M. Blaze, and G. Vigna. EVER-
EST: Evaluation and Validation of Election-Related
Equipment, Standards and Testing. Ohio Secre-
tary of State’s EVEREST Project Report, Decem-
ber 2007.

Igor Nai Fovino and Marcelo Masera. Through
the Description of Attacks: A Multidimensional
View. In Janusz Goérski, editor, SAFECOMP, vol-
ume 4166 of Lecture Notes in Computer Science,
pages 15-28. Springer, 2006.

David Basin, Jiirgen Doser, and Torsten Lodderst-
edt. Model Driven Security for Process-Oriented
Systems. In SACMAT °03: Proceedings of the
eighth ACM symposium on Access control models
and technologies, pages 100-109, New York, NY,
USA, 2003. ACM.

Monika Vetterling, Guido Wimmel, and Alexan-
der Wisspeintner. A Graphical Approach to Risk
Identification, Motivated by Empirical Investiga-
tions. Lecture Notes in Computer Science, pages
574-588, Thursday, November 23 2006.

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

Guido Oliver Wimmel. Model-Based Development
of Security-Critical Systems. PhD thesis, Technis-
che Universitiat Miinchen, June 2005.

Margaret McGaley and Joe McCarthy. Trans-
parency and e-Voting: Democratic vs. Commercial
Interests. In Alexander Prosser and Robert Krim-
mer, editor, Electronic Voting in Europe, volume 47
of LNI, pages 153-163. GI, 2004.

Letizia Caporusso and Carlo Buzzi and Giolo Fele
and Pierangelo Peri and Francesca Sartori. Transi-
tion to Electronic Voting and Citizen Participation.
In Robert Krimmer, editor, Electronic Voting, vol-
ume 86, pages 191-200. GI, 2006.

Anne-Marie Oostveen and Peter Van den Besselaar.
Security as Belief User’s Perceptions on the Secu-
rity of E-Voting Systems. In Prosser and Krimmer
[28], pages 73-82.

Komminist Weldemariam, Adolfo Villafiorita, and
Andrea Mattioli. Assessing Procedural Risks and
Threats in e-Voting: Challenges and an Approach.
In Ammar Alkassar and Melanie Volkamer, editors,
VOTE-ID, volume 4896 of Lecture Notes in Com-
puter Science, pages 38—49. Springer, 2007.

Andrea Mattioli. Analysis of Processes in the Con-
text of Electronic Election. Master’s thesis, Univer-
sity of Trento, Italy, 2005-2006. In Italian.

Aaron Ciaghi. From Laws to Models: Tools
and Methodologies. Master’s thesis, University of
Trento, Italy, 2006-2007. In Italian.

P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and
P. Traverso. NuSMV 2: An Open Source Tool for
Symbolic Model Checking. In Proc. of Interna-
tional Conference on Computer-Aided Verification,
2002.

Marco Bozzano and Adolfo Villafiorita. The
FSAP/NuSMV-SA Safety Analysis Platform. Int.
J. Softw. Tools Technol. Transf., 9(1):5-24, 2007.

Alexandros Xenakis and Ann Macintosh. Procedu-
ral Security Analysis of Electronic Voting. In ICEC
'04: Proceedings of the 6th international confer-
ence on Electronic commerce, pages 541-546, New
York, NY, USA, 2004. ACM Press.

Alexandros Xenakis and Ann Macintosh. Procedu-
ral Security and Social Acceptance in E-Voting. In
HICSS ’05: Proceedings of the Proceedings of the
38th Annual Hawaii International Conference on
System Sciences (HICSS’05) - Track 5, page 118.1,
Washington, DC, USA, 2005. IEEE Computer So-
ciety.

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Alexandros Xenakis and Ann Macintosh. Using
Business Process Re-engineering (BPR) for the Ef-
fective Administration of Electronic Voting. The
Electronic Journal of e-Government, 3(2), 2005.

Alexandros Xenakis and Ann Macintosh. A
Generic Re-engineering Methodology for the Or-
ganized Redesign of the Electoral Process to an E-
electoral Process. In Robert Krimmer, editor, Elec-
tronic Voting, volume 86 of LNI, pages 119-130.
GI, 2006.

Costas Lambrinoudakis, Spyros Kokolakis, Maria
Karyda, Vasilis Tsoumas, Dimitris Gritzalis, and
Sokratis Katsikas. Electronic Voting Systems: Se-
curity Implications of the Administrative Work-
flow. In DEXA ’'03: Proceedings of the I14th
International Workshop on Database and Expert
Systems Applications, page 467, Washington, DC,
USA, 2003. IEEE Computer Society.

Volha Bryl, Fabiano Dalpiaz, Roberta Ferrario, An-
drea Mattioli and Adolfo Villafiorita. Evaluat-
ing Procedural Alternatives. A Case Study in e-
Voting. Proceedings of METTEGO07, 2007. An
extended version has been published as a Techni-
cal Report DIT-07-005, Informatica e Telecomuni-
cazioni, University of Trento.

Thomas Eiter and Georg Gottlob and Heikki Man-
nila. Disjunctive Datalog. ACM Trans. Database
Syst., 22(3):364-418, 1997.

The Common Criteria (Volume 3.1), September
2006. http://www.commoncriteriaportal.org/.

Alexander Prosser and Robert Krimmer, editors.
Electronic Voting in Europe - Technology, Law, Pol-
itics and Society, Workshop of the ESF TED Pro-
gramme together with GI and OCG, July, 7th-9th,
2004, in Schlofi Hofen / Bregenz, Lake of Con-
stance, Austria, Proceedings, volume 47 of LNI.
GI, 2004.

10

