Junel7loginlsummaries_press.gxd:login summaries 5/27/07 10:$AM Page 70

70

conference reports

THANKS TO OUR SUMMARIZERS

FAST’0770

Andrew Leung
Michael Mesnier
Brandon Philips
Raja Sambasivan
Avishay Traeger
Charles Weddle

LSF’07........84
Brandon Philips

;LOGIN: VOL. 32, NO. 3

FAST ’07: 5th USENIX Conference on

File and Storage Technologies

San Jose, CA
February 13—-16, 2007

INVITED TALK

B A Crash Course on Some Recent Bug Finding Tricks
Dawson Engler, Stanford University
Summarized by Brandon Philips (brandon@ifup.org)

Storage systems have a simple and important con-
tract to keep: Given user data, they must save that
data to disk without loss or corruption even in the
face of system crashes. Dawson Engler and his
students at Stanford have created eXplode, a sys-
tematic approach to finding bugs in storage sys-
tems, to help root out the bugs that can break this
contract.

eXplode systematically explores all the possible
choices that can be made at each choice point in
the code to make low-probability events, or cor-
ner cases, just as probable as the main running
path. And it does this exploration on a real run-
ning system with minimal modifications.

This system has the advantage of being conceptu-
ally simple and very effective. Bugs were found in
every major Linux file system, including an fsync
bug that can cause data corruption on ext2. This
bug can be produced by doing the following: Cre-
ate a new file, B, which recycles an indirect block
from a recently truncated file, A, then call fsync
on file B and crash the system before file As trun-
cate gets to disk. There is now inconsistent data on
disk, and when e2fsck tries to fix the inconsisten-
cy it corrupts file B's data. A discussion of the bug
has been started on the linux-fsdevel mailing list.

EXE (EXecution generated Executions) is another
useful testing tool and was also briefly discussed.
A developer using the tool would annotate the ap-
plication to mark unrestrained input data. In the
case of file systems, the unrestrained input data is
a disk to mount. The annotated code is then run
through exe-cc, which instruments the code, and
then is compiled using gcc.

The added instrumentation will track all con-
straints on the input data to discover inputs that
can cause termination by a call to exit(), crash, as-
sertion failure, or error. The inputs that can lead
the code to terminate are recorded and used to
create an “input of death” or, in the case of a file
system, a “disk of death” that can crash the sys-
tem and uncover exploitable bugs.

Input sanitation on mounts is becoming more important as
USB flash drives become pervasive and nonroot users get
the ability to mount drives.

MEASURE THRICE

Summarized by Avishay Traeger (atraeger@cs.sunysb.edu)

B Disk Failures in the Real World: What Does an MTTF of
1,000,000 Hours Mean to You?

Bianca Schroeder and Garth A. Gibson, Carnegie Mellon
University

Awarded Best Paper!

Bianca Schroeder began by stating that understanding disk
failure frequencies has become increasingly important as
server clusters become larger. Disk replacement data shows
that what system administrators see in the real world is far
different from what we statistically predict based on manu-
facturer specifications. Better knowledge about the statisti-
cal properties of storage failure processes, such as the dis-
tribution of time between failures, can empower re-
searchers and designers to develop new, more reliable and
available storage systems.

The authors draw their conclusions from seven supercom-
puting and ISP data sets, which include more than 100,000
drives. Some factors for why disks are replaced more fre-
quently than predicted may be that administrators and
disk manufacturers may disagree on the definition of a
disk failure and that real-world operating conditions do
not match those used by the manufacturers in their accel-
erated stress tests.

Some of the interesting observations are that the MTTF
(Mean Time to Failure) is always much lower than the ob-
served time to disk replacement, that SATA is not necessar-
ily less reliable than FC and SCSI disks, and that, contrary
to popular belief, hard drive replacement rates do not
enter steady state after the first year of operation, but in
fact steadily increase over time. In addition, early onset of
wear-out has a stronger impact on replacement than does
infant mortality. The authors also show that the common
assumptions that times between failures follow an expo-
nential distribution and that failures are independent are
not correct. In addition to analyzing the data, they are cre-
ating a public failure data repository and hope that their
results will help build better systems—for example, by pre-
dicting the probability of a RAID failure.

With regard to RAID failures, where a second drive failed
during reconstruction, one questioner asked whether the
data includes information about failures in specific arrays.
The reply was that it does not, but the data that was used
should provide a conservative estimate. To the question of
whether the authors had a hypothesis about the correla-
tion of disk replacements, their reply was that the disks are
in the same physical environment and are probably under

;LOGIN: JUNE 2007

Junel7loginlsummaries_press.gxd:login summaries 5/27/07 10:$AM Page 71

similar loads. Another question involved the accuracy of
the data, given that the authors used disk replacements in
their metrics, rather than actual failures. The authors said
that even if they assumed that half of the replacements
were unnecessary, the failure rate is still twice as much as
the MTTF indicates. Someone asked how disk batches af-
fected the data, and if it could account for all of the re-
sults, which would indicate that the data should be dis-
carded. Since customers do not have data regarding bad
disk batches, the authors said that this is difficult to esti-
mate, but it is unlikely that it had much effect. Another
person noted that since bad batches exist in the real world,
the data should not be discarded.

B Failure Trends in a Large Disk Drive Population

Eduardo Pinheiro, Wolf-Dietrich Weber; and Luiz André
Barroso, Google Inc.

Although magnetic media are used to store most of the
world’s information, there is little published work on the
failure patterns of disk drives and the key factors that af-
fect their lifetime. Eduardo Pinheiro and the authors pre-
sented failure statistics from Google and analyzed the cor-
relation between failures and several parameters generally
believed to impact longevity. This analysis is made possible
by a new highly parallel health data collection and analysis
infrastructure, along with the ample amount of data pro-
vided by the authors’ computing deployment. The hope is
that this analysis will help predict failures so that adminis-
trators can act preemptively, help diagnose problems, and
improve fault-tolerant techniques.

The authors found that there was no consistent correlation
between higher temperature drives (for the available data,
between 20 and 50 degrees Celsius) or drives at higher uti-
lization levels (normalized per drive model) with failure
rates. This indicated that other effects may be more promi-
nent in affecting disk drive reliability. They confirm that
some of the SMART parameters, such as scan errors, are
well-correlated with higher failure probabilities. However,
failure prediction models based on SMART parameters
alone are likely to be limited in their accuracy, since many
drives failed with no SMART errors.

Randal Burns (Johns Hopkins University) asked how this
research has affected disk replacement policies at Google.
The reply was they have not achieved high enough accu-
racy yet to base purchasing decisions on the data. Someone
asked about the kind of accuracy one could get by model-
ing the SMART data. It was explained that this would re-
sult in many false positives and not enough good predic-
tions, but it depends on the modeling techniques. In re-
sponse to whether it was worth replacing disks as soon as
an error was seen, the reply was that it would not be cost-
effective. Someone later noted that this is true for Google
since they have very good replication, but it is not true for
the common user. Rik Farrow (;login: editor) asked wheth-
er multiple SMART errors are a better indicator for disk

CONFERENCE SUMMARIES A

o

failure, and the presenters admitted that this is in fact the
case. Someone inquired as to whether the data that was
collected included disk access patterns. Although this was
examined, no significant differences were found. Ying
Wang asked whether the type of disk failure was taken
into consideration (i.e., bad blocks, head crashes, etc.).
Eduardo replied that they did not include such data in
their analysis, and they used disk replacements to model
failures. Noting the correlation between SMART errors and
failures, another questioner asked why this can’t be used
for prediction, but it was explained that although the
drives will be more likely to fail after error, the rates are
not so much more likely that a prediction is possible. More
SMART data may help form predictions. Finally, the ques-
tion of whether the correlation between disk failures and
variation in temperatures was investigated came up. Al-
though it was, there was no strong correlation.

B A Five-Year Study of File-System Metadata

Nitin Agrawal, University of Wisconsin, Madison; William]J.
Bolosky, John R. Douceur; and Jacob R. Lorch, Microsoft
Research

Nitin Agrawal explained that metadata from over 60,000
Windows PC file systems at Microsoft collected over five
years was used to study how various file characteristics
changed over time. This data can prove useful for design-
ers of file systems and related software, testing hypotheses,
driving simulations, and validating benchmarks. The au-
thors also provided a generative, probabilistic model for
how directory trees are created, in terms of the depth of
the namespace tree and the distribution of subdirectories.
The authors plan to make their data set publicly available.

Some of their observations: (1) Both the mean file size and
the number of files have increased. (2) A few filename ex-
tensions account for a large percentage of files and storage
and have not changed much with time. (3) Less filesystem
content is created or modified locally over time. (4) Direc-
tory size distribution has not changed significantly, al-
though directory size is steadily increasing. (5) The frac-
tion of documents in the namespace subtree meant for
user documents and settings has increased in every year of
the study. (6) Although filesystem capacity has increased
dramatically, filesystem fullness has only slightly de-
creased. (7) Large files (e.g., binaries, movies, database
files) are contributing to an increasing fraction of filesys-
tem usage, but most files are still 4KB or smaller. (8) The
median file age is between 80 and 160 days, and this has
not changed with time.

Erez Zadok (Stony Brook University) asked whether there
were trends in how people were organizing their files. The
reply was that most files were being stored in the Win-
dows, Documents and Settings, and Program Files directo-
ries. Another question was about the types of systems and
workloads that were analyzed. Agrawal said that almost all
were Windows PCs and were mostly from developers.
Geoff Kuenning (Harvey Mudd College) asked how they

72 ;LOGIN: VOL. 32, NO. 3

Junel7loginlsummaries_press.gxd:login summaries 5/27/07 10:$AM Page 72

considered machines where capacity was added, or the sit-
uation when a file system was migrated to a new machine.
The study considered these to be new file systems. There
was an inquiry about the presenter mentioning that most
files were less than 4KB but also saying that the median
size was 4KB. Agrawal joked that, in this case, most means
half, and the audience laughed. In response to whether dif-
ferences between developer and nondeveloper distribu-
tions were considered, the reply was that they considered
temporal trends and not workload types, but the data is
available for future analysis. Eduardo Pinheiro (Google)
inquired about the reason for 4KB being the median file
size, wondering whether this had something to do with
block sizes or application behavior. The presenter was un-
sure of the cause. Finally, John Wilkes (HP Labs) asked
about the amount of unique data present in the file system,
since all probably had similar installs. While admitting
that this data may be useful to analyze, they said they had
not done so.

WHO PUT THEIR NETWORK IN MY STORAGE?

Summarized by Michael Mesnier
(michael.mesnier@intel.com)

B Proportional-Share Scheduling for Distributed Storage
Systems

Yin Wang, University of Michigan; Arif Merchant, HP
Laboratories

Yin Wang began by saying that the advantage of distrib-
uted storage is the ability to scale out using cheap com-
modity hardware (storage bricks). HP’s Federated Array of
Bricks (FAB) is one example of such a distributed architec-
ture. However, the drawback is often unavoidable resource
contention, which is complicated by the fact that data is
typically distributed across multiple storage bricks and ac-
cessed by clients using different I/O patterns.

The goal of this work is to provide proportional-share
scheduling of storage resources based on a client’s
“weight,” which can be assigned by an administrator. No
previous work in this area has addressed multiple sched-
ulers with multiple resources (storage bricks). Of course, if
a scheduler is simply placed at every storage coordinator
or back-end storage device, no one scheduler will ever see
all of the I/O requests. For example, a scheduler at a stor-
age brick will not see requests to other storage bricks, and
a scheduler at a coordinator will not see requests to other
coordinators. Thus it would be difficult to determine a
client’s total service across all resources.

One naive solution is to broadcast all I/O requests to all
bricks or coordinators, but this of course introduces signif-
icant network overhead. However, the authors show that
only the service cost of each I/O needs to be broadcasted
to each coordinator. Such a broadcast includes a “delay
value” that allows a storage coordinator to delay 1/O re-
quests from a particular client in order to provide propor-

o

tional-share service across clients. In their architecture, co-
ordinators maintain FCFS queues and can therefore easily
incorporate the broadcasted delay values.

The authors present a new proportional-service scheduling
framework suitable for use in a distributed storage system
that uses such a delay-broadcast approach. Their approach
is an extension of SFQ(D), called Distributed Start-time
Fair Queuing (DSFQ). Two approaches are evaluated:
Total-DSFQ and Hybrid-DSFQ. The primary difference is
that Hybrid-DSFQ guarantees a minimum amount of ser-
vice to each client. In their evaluation, the authors showed
that Total-DSFQ works in the single-brick case, across
multiple bricks, and across multiple bricks with dependen-
cies among the I/O requests. They also showed that Hy-
brid-DSFQ, unlike Total-DSFQ, guarantees a minimum
share for each client stream for fluctuating workloads.

David Black (EMC) asked whether there was any negative
result with respect to disk striping; he believed that total
service was at odds with striping. Arif Merchant said that
the degree of proportional sharing can be adjusted to work
with striping. Wenguang Wang (Apple) then asked what
would happen if the client issued one stream with small
random I/O and another with sequential. Yin said that that
you can still maintain total proportional-service sharing.

B Argon: Performance Insulation for Shared Storage Servers

Matthew Wachs, Michael Abd-El-Malek, Eno Thereska, and
Gregory R. Ganget;, Carnegie Mellon University

Matthew Wachs stated that benefits of shared storage in-
clude the simplicity of a single infrastructure and the abil-
ity to better load-balance workloads across storage servers.
However, these benefits come at the cost of interference
among different workloads. When workloads share storage
resources without any regard to efficient I/O scheduling,
storage efficiency can plummet. Whereas processor and
network sharing is well understood, it is unclear how to
best share storage resources such as disk and cache. More-
over, it is unclear what a “time slice” even means for a re-
source such as a cache.

The goal of Argon is to provide better performance insula-
tion. In the ideal case, sharing a storage server among n
processes will result in each process receiving 1/n of its
stand-alone performance. Because this ideal may not al-
ways be achievable, Argon uses an “R-value” to force a
bound on lost efficiency. Once an R-value, such as 0.9, is
set, each of the processes will then have performance
within that fraction of the ideal. In general, typical disk
scheduling policies do not grant sequential workloads long
enough blocks of time, resulting in too much interference
from seeks. Therefore, one goal of Argon is to amortize the
cost of each seek by having larger request sizes for sequen-
tial workloads (using prefetching or write coalescing). For
a given R-value, Argon automatically determines at system
startup the optimal request size for a given storage server.

;LOGIN: JUNE 2007

Junel7loginlsummaries_press.gxd:login summaries 5/27/07 10:?E:AM Page 73

Seek-cost amortization solves only part of the performance
insulation problem. The other part is cache pollution. To
address this, Argon statically partitions cache space among
n competing workloads, such that each workload is given
an amount of reserved cache space. The amount each
workload is given is determined through simulation:
Block-level traces are replayed through a cache simulator
in order to determine how a workload’s performance im-
proves with increased cache allocation. Again, the goal is
to achieve within an R-value of the ideal performance by
balancing the cache allocations for each workload.

Wenguang Wang (Apple) asked about the cache replace-
ment policy, believing something smarter than LRU could
be used. Matthew agreed, noting that although LRU was
used for the experiments, one could use different policies
for different workloads. Matthew further noted that for
certain combinations of workloads, more intelligent poli-
cies (e.g., ARC) may obviate the need to statically partition
the cache. Another attendee asked whether Argon yields
the remainder of a time slice to scheduled workloads.
Matthew replied by saying that Argon does not currently
implement yielding. The challenge is determining the
“right” time to yield, as application think time may make
it appear that a request stream is idle, when in fact more
1/0 is soon to be issued. Yin Wang (University of Michi-
gan) asked whether a trade-off exists between the length of
the time slice (request size) and the fairness. Matthew said
no, as fairness can also be achieved with larger time slices.
More strictly, fairness can be achieved with any length time
slice so long as the same length is given to each workload.
The purpose of longer time slices is to increase efficiency,
not change fairness. An attendee from IBM suggested that
better write scheduling (e.g., request coalescing) could im-
prove performance, and Matthew agreed. Another attendee
asked what would happen if the cache were not large
enough to store prefetched data for a large number of se-
quential workloads. Matthew said that the 1/O accesses
would degrade into random with a shared cache and that
Argon does nothing to change this fact. Finally, an at-
tendee from NetApp mentioned that a large variance in re-
sponse time might be unacceptable for certain applica-
tions. Matthew agreed, but he also noted that a low mean
response time is often more important than the variance
for many applications. Matthew further noted that applica-
tions that need low variance in response times might need
to have their own systems.

W Strong Accountability for Network Storage
Aydan R. Yumerefendi and Jeffrey S. Chase, Duke University

For network storage to be trustworthy, Adan Yumerefendi
declaimed that strong accountability is required for both
clients and servers. Servers must be able to track client ac-
cesses and guarantee nonrepudiation. Clients must be able
to verify that their actions against a server have been com-
mitted and verify that a server is faithful.

CONFERENCE SUMMARIES 73

o

The authors presented CATS, a rudimentary network stor-
age service with strong accountability properties. CATS
takes a “trust but verify” approach. The properties of their
threat model include authenticity and undeniability, fresh-
ness and consistency, and completeness and inclusion.
Confidentiality is also desired but is outside the scope of
this work. The mechanisms used by CATS to ensure strong
accountability include digital signatures, client action his-
tory, broadcasts of digital signatures of server memory
state, challenges and proofs, and auditing.

CATS is an object storage service and a state storage tool-
kit. Each stored object is annotated with action records
that reflect all state changes to the object. Versioning pre-
serves multiple versions of each object, and version stamps
allow clients and servers to agree on the ordering of up-
dates. Such stamps also make request replay/reordering de-
tectable. Servers must commit to their state and broadcast
a digital signature of their internal memory state to the
clients. Thus, a server can deny service but never subvert
the system. Moreover, servers can make provable state-
ments about their internal state. Freshness prevents a
server from reverting writes, as each accepted write is rep-
resented in the digest of a server’s internal memory state,
so a committed request cannot be removed without detec-
tion by the clients.

The CATS storage service presented by the authors is just
one example of a strongly accountable service that can be
built by using the CATS state storage toolkit. The authors’
evaluation shows that the cost of such a service can be
high but that the approach is practical when strong ac-
countability is required.

One attendee asked whether clients can exchange digests
directly to perform verification. Aydan answered yes, not-
ing that a common framework could be used to publish di-
gests. An attendee from HP labs asked how the systems
scales to large numbers of objects, specifically, whether one
can keep files from disappearing. Aydan said that a bound
on the probability of the file/object’s existence can be
given, but it depends on the age of the object.

WORK-IN-PROGRESS REPORTS (WIPS)

Summarized by Brandon Philips (brandon@ifup.org)
B Secure, Archival Storage with POTSHARDS

Mark Storer introduced POTSHARDS, a system to securely
store archival data. The system attempts to find a better so-
lution to long-term encrypted storage. It uses secret shar-
ing across a number of RAID archives and ensures that no
one archive gets enough shards to reconstruct the secret. It
also uses approximate pointers to ensure that an attacker
has to have access to the data on all archives in order to re-
construct the data set.

74 ;LOGIN: VOL. 32, NO. 3

Junel7loginlsummaries_press.gxd:login summaries 5/27/07 10:$AM Page 74

B SeFS: Unleashing the Power of Full-Text Search on File
Systems

Stergios Anastasiadis proposed SeFS, a file system that is
designed to facilitate full-text search. The need for this
new file system was defended by the weaknesses in exist-
ing search technologies such as electronic journal data-
bases and Web searches. Journal database entries are im-
mutable once they are added to the database and Web
search engines index data infrequently, but on most file
systems files are modified frequently, making both ap-
proaches unacceptable for filesystem search.

B On the Scalability of Storage Sub-System Back-end Network

Yan Li presented progress on research concerning how
many disks a Fibre Channel Switched Bunch of Disks (FC
SBOD) can efficiently support. The workload will be simu-
lated using the Storage Performance Council SPC-1 bench-
mark. The initial findings show that a 2Gbps FC SBOD is
saturated by 48 disks under RAID5 and 53 disks under
RAIDG6 with a stripe size of 16KB. Future work includes
testing 4Gbps versus dual 2Gbps FC and the scalability of
FC SBOD with a cache system.

B Layout-aware Exhaustive Search

Aravindan Raghuveer presented the motivation and plan
for a layout-aware exhaustive search algorithm. The work
is motivated by Jim Gray’s keynote at FAST 05, where he
projected that future hard disks will take a day to read
10TB of data sequentially and 5 months with random ac-
cess and 8KB sectors. To get the fastest search possible an
exhaustive search algorithm will need two properties: It
must use physical layout information to compute a opti-
mal sequential search, and it must have the ability to sus-
pend and resume a search to provide service to real-time
requests. Two pieces of metadata will need to be main-
tained to achieve these goals: location metadata on data
object placement and state metadata on a suspended
search.

B Scaling Security for Big, Parallel File Systems

Andrew Leung proposed a new protocol, Maat, to scale /O
security to petabyte-scale parallel file systems used for
high-performance computing applications. Current sys-
tems rely on shared-key cryptography, which can be a
weakness in a large system. Maat uses extended capabili-
ties, automatic revocation, and secure delegations. Ex-
tended capabilities can authorize 1/O for a number of
clients and files, which reduces the number of capabilities
in the system. The small number of capabilities allows
asymmetric cryptography to be used efficiently. Each capa-
bility has an automatic revocation timeout and can be ex-
tended by using a small, efficient extension token. An im-
plementation is underway on top of the Ceph parallel file
system.

o

B CompulsiveFS: Making NVRAM Suitable for Extremely
Reliable Storage

Kevin Green presented CompulsiveFS, a file system that
stores persistent metadata directly to an erasure coded log
in NVRAM instead of a RAM cache. The file system per-
forms incremental erasure-encoding and signature compu-
tations over the contents of the log to create fault toler-
ance. The current prototype log is an order of magnitude
faster than page-protected caches for small writes of 10-50
bytes. CompulsiveFS is in the early stages of research, de-
sign, and implementation.

B Performance Evaluation of RAID6 Systems

Yan Li presented a plan for a three-piece study on the per-
formance characteristics of RAID6 under the Storage Per-
formance Council-1 benchmark. The study will simulate
the storage using SimRAID, which models and simulates
the RAID controller, cache, fibre-channel bus, and disks
and has been shown to have a maximum inaccuracy of 5%.
The study looks at RAID6 performance under fault-free
mode, degraded mode, and recovery mode. Of particular
interest is finding the ideal mix of handling requests versus
rebuilding a disk.

B GANESHA, a Multi-Usage with Large Cache NFSv4 Server

Philippe Deniel presented work on GANESHA, a user-
space NFSv4 server with a large cache and support for a
number of backend file systems. GANESHA has a filesys-
tem abstraction layer (FSAL) that makes writing plug-ins
for different backing file systems easy. Currently, there is
support for HPSS and POSIX backends. A number of inter-
esting backends are under development; these include an
NFSv4 client that will allow GANESHA to be a proxy, an
SNMP backend that will allow MIBS to be browsed, and
the LDAP backend that will allow browsing of trees. An-
nouncements to SourceForge and freshmeat are forthcom-
ing.

B FlexiCache: A Flexible Interface for Customizing Linux File
System Buffer Cache Replacement Policies

Pavan Konanki presented the initial work for FlexiCache,
an interface in the Linux kernel to accommodate different
buffer cache replacement algorithms. The motivation for
this work is to test new replacement algorithms, such as
ARC, PCC and LIRS, that have been shown to perform
better under certain access patterns. Also, this API would
accelerate the testing and development of new buffer cache
replacement algorithms. The key issue is trying to design
the system to support many replacement policies while
keeping the cache mechanics hidden. The performance im-
plications of this added generality are also unknown.

H Diamonds Are Forever, Files Are Not

Surendar Chandra talked about storage systems that use an
“importance number” to decide how to manage a data
store automatically. The experiments were motivated by a
storage server for video-recorded lectures where some of

;LOGIN: JUNE 2007

Junel7loginlsummaries_press.gxd:login summaries 5/27/07 10:$AM Page 75

the data may be less important than new data coming in
and can be removed. To make the system successful, ad-
ministrators must be able to specify accurate object life-
times; therefore providing usage feedback is important.
Currently a system is being built to prototype this idea.

B RBF: A New Storage Structure for Space-Efficient Queries
for Multidimensional Metadata in OSS

Yu Hua presented RBE an r-tree with a bloom filter at each
node, a structure that allows for efficient point and range
queries. Point queries ask whether an object is in a data set
and a range query grabs the set of objects that match a
query. The application of this is to make efficient object-
based storage devices that can do point/range operations
on object metadata. Currently, a real 10TB storage system
has been implemented using a partial implementation of
the RBF structure.

B Storage Performance Isolation: An Investigation of Contem-
porary 1/O Schedulers

Sarala Arunagiri presented research on the performance
isolation characteristics of a number of modern I/0 sched-
ulers. This research is motivated by the quality of service
guarantees that large consolidated shared storage must
make. The findings suggest that many 1/O schedulers do
not provide performance isolation in all circumstances.

INVITED TALK

B Trends in Managing Data at the Petabyte Scale

Steve Kleiman, Senior VP and CTO, Network Appliance

Summarized by Michael Mesnier
(michael. mesnier@intel.com)

In the first three-quarters of 2006, approximately 900 PB
of storage was shipped worldwide by storage systems ven-
dors, including Dell, EMC, Hitachi, HP, IBM, and Network
Appliance. Of this total, Network Appliance shipped ap-
proximately 200 PB and is currently at a 100 PB/quarter
run rate.

The big challenge today is keeping pace with such growth.
A 50-100% yearly increase in storage capacity is not un-
common. Most of this growth is from unstructured data
(e.g., contracts, letters, memos) and semi-structured data
(e.g., email), but structured data (db) is also growing.
Managing this growth introduces hidden burdens (costs).

A common strategy is to overprovision, resulting in low
disk utilizations (with 25% or less being typical). Of
course, CIOs do not want to take chances when it comes
to safely storing company and/or customer data. Today’s
legal burdens (e.g., regulatory compliance) and social bur-
dens (e.g., losing data is bad press) underscore this point.
In general, overprovisioning stems from the “build-out”
manner in which most storage infrastructures are managed
today (i.e., within application-centric “silos”), including

CONFERENCE SUMMARIES 75

o

space for an application’s primary storage, disaster recov-
ery, testing and development, backup, and archive. Al-
though silos provide good QoS, they can result in different
processes for managing data, and they require too many
experts.

The key to reducing hidden costs is to separate data from
its physical containers and to use virtual copies of data
whenever possible (e.g., snapshots, clones, and data mir-
rors). This can help reduce the physical storage require-
ments and consolidate storage infrastructure. In turn, this
will reduce the number of processes and experts. Of
course, a new management paradigm is required to deal
with virtual copies. The approach taken by Network Appli-
ance is to consolidate all data and copies associated with a
particular application into a “data set.” Data sets can have
properties such as security, regulatory compliance, QoS,
and namespace management. Indeed, future systems will
see unified environments with user-specified properties on
data sets. As such, properties can remain constant while
the storage infrastructure adapts to advances in storage
technology.

In summary, much of this is already starting to happen.
“It’s good to be in storage!” Steve proclaimed. There is an-
other decade of interesting change (megatrends) ahead of
us.

Rik Farrow (USENIX) asked whether there will be a reduc-
tion in the amount of storage because of virtual copies,
and a similar question was posed by Chris Lumb (Data
Domain). Steve said yes, but he also pointed out that it
will be easier to create copies. Rik then asked if file sys-
tems will become more interesting. Steve said yes, as they
will be forced to use the new abstractions for storage.
Garth Gibson (Carnegie Mellon) made a comment in sup-
port of the Aperi open-source storage management frame-
work. David Black (EMC) asked how we can prevent users
from turning the QoS dials “all the way to the right.” Steve
said that, in practice, users will be presented with options
that they will have to pay for (e.g., bronze, silver, and
gold). Julian Satran asked how we can move forward to
content management, as users are not interested in manag-
ing storage. Steve replied that although he did not talk
about application integration, he expects storage to get
tighter with the application (e.g., data sets administered
through Oracle). An attendee from Berkeley asked how
support will work for a single management infrastructure.
Steve said that virtualization will make it difficult, but he
expects that most of the deployments will occur in a “two
worlds” scenario where applications can share the same
physical infrastructure but still be managed separately.

76 ;LOGIN: VOL. 32, NO. 3

Junel7loginlsummaries_press.gxd:login summaries 5/27/07 10:$AM Page 76

THE LATEST VERSION

Summarized by Raja Sambasivan (rajas@andrew.cmu.edu)

B Design and Implementation of Verifiable Audit Trails for a
Versioning File System

Zachary N.J. Peterson, Randal Burns, Giuseppe Atensiese, and
Stephen Bono, Johns Hopkins University

Zach Peterson presented a system capable of creating,
managing, and verifying digital audit trails for versioning
file systems. The digital audit system he presented involves
three components: the file system, an authenticator, and an
escrow site. The file system generates new versions of files
and, when an audit trail is desired for a particular file ver-
sion, commits an authenticator of that file version to an es-
crow site. The authenticator stored by the escrow site is a
MAC that includes the authenticator of the previous ver-
sion of the file and the data contained in the current ver-
sion. An independent auditor can verify the contents of a
given version of a file by first requesting both the version
data and the previous version’s authenticator and then
comparing the auditor-constructed MAC based on this
data to the MAC stored on the escrow site.

During his talk, Peterson noted that a central challenge the
authors faced lay in finding a way to limit the amount of
I/O necessary when computing authenticators. Computing
an HMAC for a file, for example, requires that all of the
file’s data first be read into memory. To address this prob-
lem, the authors chose to use an XOR MAC as the authen-
ticator. XOR MACs allow incremental authentication and
thus allow the cost of authentication to scale with the size
of changes to the data, not the size of the file.

The authors implemented their digital audit system in the
ext3cow filesystem. Evaluation was performed using two
micro-benchmarks and a trace-driven study, all of which
showed significant gains for using an XOR MAC based

on SHA-1 versus an HMAC based on SHA-1. Most of
these gains were a result of the XOR MAC needing to
perform less I/O than the HMAC. Most interestingly, Peter-
son pointed out that XOR MACs outperform HMACS es-
pecially well when the workload seen is dominated by
small appends. These workloads can best take advantage
of the incremental nature of the XOR MAC. Peterson then
showed that write activity is dominated by appends via an
analysis of his trace data.

During the Q&A period, Bill Bolosky from Microsoft asked
whether the authors had considered using Merkle trees in-
stead of the XOR MAC for their authenticators. Peterson
responded by stating that they had considered Merkle
trees, but had decided to use the XOR MAC instead be-
cause it is more efficient for data that changes via small in-
cremental updates. David Black from EMC then asked
whether the XOR MAC reveals information about what
was authenticated and whether such transparency matters.
Peterson’s response was that it is the underlying MAC that

o

determines if any information is revealed. In this case the
underlying MAC, SHA-1, does not reveal any information.
Finally, Eduardo Pinheiro from Google wanted to know
the size of the trace data used. Peterson stated that the
trace data size was 4.2 gigabytes.

B Architectures for Controller Based CDP

Guy Laden, Paula Ta-Shma, Eitan Yaffe, Michael Factor, and
Shachar Fienblit, IBM Haifa Research Laboratory

The ability to roll back to any previous storage state is
clearly very useful and is exactly the functionality that
continuous data protection (CDP) techniques provide. In
this talk, Paula Ta-Shma compared four different storage
architectures and provided analytic equations for reasoning
about their cost when applied to different types of work-
loads. Finally, a trace-based study was used to validate the
equations and compare the architectures on real work-
loads.

Paula Ta-Shma started by stating that the cost of using
CDP is the number of user data device 1/Os per write re-
quest in the common case (when no data is being re-
verted). This cost depends on four variables: the CDP
granularity (specifically, the granularity of updates pre-
served), the workload (specifically, the temporal distance
distribution of writes), the controller write cache (specifi-
cally, the size and replacement policy), and the CDP archi-
tecture in use.

Next, she described four different architectures for CDP:
Logging, SlipStream, SplitDownStream, and Checkpoint-
ing. The Logging architecture is the simplest—the entire
history of writes is stored in a log. Only one user data I/O
per write request is incurred. However, although this archi-
tecture works well for write-dominated workloads, it does
not allow for good read performance.

To remedy the read performance problem of the Logging
architecture, the next two architectures split the version
data into two volumes—a directly addressable “current
store” that holds the current data and a hidden, mapped
“history store” that holds all historical data, including the
current version. The first of these architectures, Split-
Stream, splits write data above the cache; one copy of the
write data is sent to each volume and thus a maximum of
two user data I/Os and a minimum of zero user data I/Os
are incurred per write request. Conversely, the SplitDown-
Stream architecture splits write data underneath the cache.
This architecture allows cache pages to be shared across
current and historical volumes, thereby conserving mem-
ory resources. Compared to the Logging architecture, both
the SlipStream and SlipDownStream architectures achieve
better read performance, but they incur more I/Os and use
more resources.

The Checkpointing architecture is similar to that of Split-
DownStream, except that the history store only holds pre-
vious versions of write data. When a write is evicted from

;LOGIN: JUNE 2007

Junel7loginlsummaries_press.gxd:login summaries 5/27/07 10:$AM Page 77

cache, the previous version of that data is copied from the
current store to the history store. This architecture requires
a maximum of three user data I/Os and a minimum of one.

Next, Paula compared the CDP cost of the various archi-
tectures when applied to a trace of the SPC-1 benchmark,
which exhibits large temporal write distances, and the
Cello99 trace workload, which exhibits smaller temporal
write distances. For SPC-1, the results showed that Split-
DownStream costs less than Checkpointing for smaller
CDP granularities (i.e., less than 30 minutes). The same
trend was observed for Cello99, except the cutoff point oc-
curred near 5 minutes instead of 30 minutes. Additionally,
the cost of Checkpointing declined to that of Logging at
very coarse granularities.

At the end of the talk, an attendee asked whether the cost
of SlipStream and SlipDownStream was one, not two, user
data 1/Os per write, since the 1/Os to the current store and
to the history store occur in parallel. Keith Smith asked
whether different CDP architectures will need different
metadata structures and thus differ in the cost of accessing
metadata. Paula responded that in her CDP implementa-
tion, the underlying metadata structures for different archi-
tectures are the same, but they could be different.

B Jumbo Store: Providing Efficient Incremental Upload and
Versioning for a Utility Rendering Service

Kave Eshgi, Mark Lillibridge, Lawrence Wilcock, Guillaume
Belrose, and Rycharde Hawkes, HP Laboratories

Many providers would like to provide batch services to
customers, in which clients send some data to the provider
and the provider performs some large computation on the
data (e.g., finite element analysis, data mining) and then
sends the results back. However, providing batch services
is difficult because the links used to transfer data from the
customer to the provider (e.g., over the Internet via ADSL)
tend to be very slow. In this talk, Kave Eshgi addresses this
problem by describing a new storage system called Jumbo
Store, which uses Hash-Based Directed Acyclic Graphs
(HDAGS) to provide incremental upload of filesystem
snapshots from a Jumbo Store client to a Jumbo Store
server. The authors claim that incremental upload is a so-
lution to the transfer problem since, in many cases, new
client jobs use data that is only slightly different from pre-
vious jobs. Eshgi noted that Jumbo Store had been experi-
mentally evaluated by incorporating it into the HP Labs
prototype utility rendering service located in Palo Alto,
CA, and used by animators in England to create a number
of high-quality animated shorts.

To provide some intuition about HDAGs, Eshgi noted that
HDAGs are a generalization of Merkle trees. However, he
was adamant that HDAGs not be called Merkle trees, as
DAGs, unlike trees, can contain nodes with multiple par-
ents. Also, unlike Merkle trees, nonleaf nodes can contain
data in an HDAG.

CONFERENCE SUMMARIES

o

7

An HDAG is a directed acyclic graph (DAG) whose nodes
refer to other nodes by their hash rather than their loca-
tion in memory. Each node in a HDAG is comprised of two
fields: the pointer field, which is a possibly empty array of
hash pointers, and the data field, which is an application-
defined byte array. Jumbo Store encodes the directory
structure into an HDAG by representing each directory as
an HDAG node whose data field contains that directory’s
metadata and whose hash pointers point to the directory’s
members. Conversely, a single file is represented as a two-
level HDAG:; the first-level node’s data field contains the
metadata for the file and its pointer field points to a node
containing the file contents. To avoid having to send the
entire file contents every time a small portion is changed,
the file contents are broken into chunks via a technique
called content-based chunking.

Eshgi next described the utility rendering service (URS) in
which Jumbo Store was used. The URS is a batch utility
service that performs the calculations required to render a
3D movie. Animators in the U.K. would use the URS client
to submit rendering jobs to the URS in Palo Alto. To evalu-
ate Jumbo Store, a subset of the data uploaded by the ani-
mators was re-uploaded using rsync (with the compress
option turned on) and the difference in actual data trans-
ferred was noted. The authors found that Jumbo Store, on
average, transferred half as many bytes as rsync.

During the Q&A period, an attendee asked whether the
chunk sizes used to split up the file contents were static.
Eshgi responded affirmatively, stating that a static chunk
size of 4KB was used. Another attendee wanted to know
whether Jumbo Store was subject to large latencies when
uploading information. Eshgi answered that latency was
large, but that latency was a relatively inconsequential
metric given the usage scenario of Jumbo Store within the
URS. Specifically, the animators would often leave or work
on other things as soon as they were convinced that the
incremental upload had started. Finally, Keith Smith asked
whether the feedback from the animators using the system
had been positive. Eshgi responded that the animators
liked the system.

SCALABLE SYSTEMS

Summarized by Avishay Traeger (atraeger@cs.sunysb.edu)
B Data ONTAP GX: A Scalable Storage Cluster

Michael Eisler, Peter Corbett, Michael Kazar, and Daniel S.

Nydick, Network Appliance; J. Christopher Wagner; Ironport

Systems, Inc.
Peter Corbett began by describing Data ONTAP GX as a
scalable clustered network file server composed of a num-
ber of cooperating filers. The storage of a large number of

filers can be presented as a single shared storage pool. The
system’s key features are scalability (by allowing for the

78 ;LOGIN: VOL. 32, NO. 3

Junel7loginlsummaries_press.gxd:login summaries 5/27/07 10:$AM Page 78

easy addition of filers to the cluster), location transparency
of data within the cluster, an extended namespace that can
span multiple filers, increased resiliency in the face of fail-
ures, and simplified load and capacity balancing.

The system exports both NFS and CIFS protocols to
clients via virtual interfaces (VIFs). Requests are initially
processed by the networking blade (N-Blade), which ter-
minates incoming NFS and CIFS connections and main-
tains protocol-specific state. The requests are translated
into SpinNP RPCs, which are transmitted over a cluster
fabric to the server responsible for the target volume,
where a volume is a filesystem subtree and volumes are
grouped into aggregates. SpinNP calls are processed by the
data blade (D-Blade) on the target server. Two cluster-wide
databases are used to route requests and responses. The
volume location database (VLDB) tracks the corresponding
aggregate for each volume, as well as the D-Blade currently
responsible for the aggregate. The VIF manager database
tracks which N-Blade is currently hosting each virtual in-
terface, so that D-Blades can send callbacks to clients.

Data ONTAP GX is the first system to achieve one million
operations/s on the SPEC SFS benchmark. In addition, it
scales linearly on all benchmarks up to 24 nodes. The
product is already deployed at customer sites and provides
a powerful set of features that go well beyond what a
stand-alone file server offers.

Gregory Touretsky (Intel) asked whether performance was
measured on single or multiple D-Blades, and the reply
was that benchmarks were run across multiple volumes
and multiple D-Blades. Someone asked what happens to
performance when they go beyond 24 nodes, and the audi-
ence laughed. The reply was that this is what is currently
being shipped, and they are working on expanding the sys-
tem further. There was a question about what was used to
benchmark performance via the CIFS interface, and if any
results were available. The reply was that there is no stan-
dard CIFS benchmark, and any results that they have are
not publicly available. Another questioner wondered why
write throughput was less than half of read throughput.
The answer was that it is probably the result of read-ahead.

B //TRACE: Parallel Trace Replay with Approximate Causal
Events

Michael P Mesniet; Intel Research with Carnegie Mellon Uni-
versity; Matthew Wachs, Raja R. Sambasivan, Julio Lopez,
James Hendricks, Gregory R. Ganger, and David O’Hallaron,
Carnegie Mellon University

Michael Mesnier stated that the goal of /TRACE is to ex-
tract traces of parallel applications and replay them in such
a way that the I/O behavior is true to the original work-
load. This is done by discovering internode data depend-
encies and inter-I/O compute times. Replaying the trace as
fast as possible is one classic option, but performance is
poor because it assumes an /O bottleneck, there is no idle

o

time, and dependencies are ignored. The other classic re-
playing option is to use the original timing, but with this
technique we would not see any changes in performance
when replaying on different hardware.

//TRACE is portable and treats the application and storage
system as a black box. To find the dependencies, the work-
load is run multiple times, each time adding delays to the
/O stream of a node. I/O dependencies can be found when
nodes block on the I/O that is currently being throttled.
This will also find computation times. It then annotates
the per-node traces with the dependencies. These annota-
tions allow a parallel replayer to closely mimic the behav-
ior of a traced application across a variety of storage sys-
tems. The number of runs and the rate at which I/O is
throttled determine how many data dependencies can be
discovered, as well as the time necessary to collect the
traces. (One can trade off running time and replay accu-
racy.) Once //TRACE has collected this information, it can
adjust with the speed of the storage system while enforcing
dependencies. This technique works well for parallel appli-
cations with deterministic I/O dependencies.

The causality engine that /TRACE utilizes is implemented
as an LD_PRELOAD library, allowing it to capture file-level
traces. This allows users to properly evaluate different file
and storage systems. Compared to other replay mecha-
nisms, /TRACE offers significant gains in replay accuracy.
Opverall, the average replay error for the three parallel ap-
plications evaluated is below 10% when throttling every
node and delaying every I/O. Trading off replay errors with
greater time in collecting the traces was explored.

One question was asked about how //TRACE orders events
within a node. Mesnier explained that it is actually the
threads that are being throttled, and so this is not an issue.
Another point raised was that most HPC workloads today
are performing nondeterministic I/O, where this technique
will not work. The reply was that there are many work-
loads of both types, and this work targets the deterministic
applications. A follow-up point was that many HPC cen-
ters have clusters that are being shared by several applica-
tions, so even a deterministic application will act in a non-
deterministic fashion. Mesnier responded that they are tar-
geting dedicated clusters, which are often used for larger
applications. Another question involved how one could
deal with bottlenecks within the applications. The answer
was that one could perform static analysis on the traces to
see if there are too many barriers, for example, or possibly
visualize the traces. In response to whether they had tried
replaying the traces on systems other than those where the
trace was collected, the reply was that this is what they
had in fact done in their evaluation.

;LOGIN: JUNE 2007

Junel7loginlsummaries_press.gxd:login summaries 5/27/07 10:$AM Page 79

CACHE PRIZES

Summarized by Raja Sambasivan (rajas@andrew.cmu.edu)
B Karma: Know-It-All Replacement for a Multilevel Cache

Gala Yadgar, Technion; Michael Factot, IBM Haifa Research
Laboratories; Asaaf Schuster, Technion

Gala Yadgar introduced Karma, a system for optimizing
cache replacement in systems with multiple levels of
caching. Yadgar noted that multilevel cache hierarchies in-
troduce three major problems in cache replacement. First,
locality information is hidden from lower-level caches by
the upper-level caches. Second, cache space is wasted be-
cause blocks are often duplicated at multiple cache levels.
Finally, contextual information about blocks (e.g., the file
to which they belong, the application that issued the I/O
request, etc.) is also often hidden from the lower-level
caches. Karma addresses all of these problems in concert.
First, hints from applications are used in all cache levels to
divide disk blocks into ranges based on their expected ac-
cess pattern and access frequency; each range is allocated
its own cache partition (which may span multiple cache
levels) and replacement policy. The data blocks contained
in each partition are managed by Karma using the READ,
READ-SAVE, and DEMOTE operations. READ forces the
lower-level cache to delete a block whenever it is read by
an upper-level cache. Conversely, READ-SAVE allows a
lower-level cache to keep a block read by an upper-level
cache. Finally, DEMOTE sends a block evicted from an
upper-level cache back to the next lower-level cache. Over-
all, by using application hints and partitioning the cache,
Karma is able to use the optimal replacement policy for
each access pattern seen. As a result, it compares favorably
to all other cache replacement techniques (e.g., LRU, ARC,
MultiQ).

There are two key design decisions in Karma. The first lies
in how it partitions the workload it sees into ranges. The
second revolves around the mechanism it uses to allocate a
cache partition for each range. Workloads are partitioned
into ranges based on application hints. Blocks in a given
range have similar access frequencies and are accessed in a
similar fashion. Application-level hints are propagated to
lower-level caches by attaching a range identifier to each
cache block. Karma allocates a cache partition for a given
range in such a way as to maximize the “normalized mar-
ginal gain” for that range. The marginal gain for an access
trace is the increase in hit rate that will be seen by this
trace if the cache size increases by a single block. For ex-
ample, for sequential accesses, the marginal gain is always
zero; conversely, for looping accesses, the marginal gain is
constant until the entire loop fits in cache and is zero af-
terward. Ranges with higher normalized gains are allocated
cache partitions in higher cache levels, since it is likely
that blocks in these ranges will be accessed more fre-
quently.

CONFERENCE SUMMARIES 79

o

During the Q&A session Jason Flinn from the University
of Michigan asked how Karma dealt with access patterns
that changed too quickly for Karma to optimize for them.
Yadgar explained that such access patterns are not handled
by Karma, but their effects are somewhat minimized be-
cause Karma does not yet perform any prefetching. John
Wilkes from HP Labs then asked whether the authors had
thought about using Karma in a multiple host setup. As
an example, Wilkes noted that several changes had to be
made to DEMOTE to adapt it to work with multiple hosts.
Yadgar responded by stating that this was future work and
that, for the multiple-host case, the authors would have to
look into replacement policies that take into account the
fact that blocks are not necessarily discarded when they
leave a given host.

B AMP: Adaptive Multi-Stream Prefetching in a Shared Cache

Binny S. Gill and Luis Angel D. Bathen, IBM Almaden
Research Center

In this very entertaining talk, Binny Gill provided an anal-
ysis of sequential prefetching algorithms for the case where
an LRU cache houses prefetched data for multiple concur-
rent sequential streams. He first separated current sequen-
tial prefetching algorithms into four different classes based
on two criteria: whether the prefetching algorithm chooses
the prefetch size in a fixed manner or in an adaptive man-
ner and whether the prefetching algorithm prefetches in a
synchronous or asynchronous manner. He then showed
that, of these classes, Adaptive Asynchronous (AA) pre-
fetching algorithms show the most promise for sequential
prefetching in terms of minimizing cache pollution and
wasted prefetches. Next, a formal analysis showing how to
best adaptively pick the parameters p (the prefetch dis-
tance) and g (the distance at which a prefetch is triggered)
for AA prefetching algorithms was shown. Finally, Binny
described AMP, an implementation of an AA algorithm,
and experimentally showed its superiority to other types of
prefetching algorithms for sequential workloads.

During the talk, Binny described his taxonomy of different
prefetching algorithms by using an animation showing
customers reaching for and eating donuts on a table while
a waiter strove to “prefetch” more donuts according to the
semantics of the various prefetching algorithm classes. His
taxonomy classifies prefetching algorithms into four differ-
ent classes: Fixed Synchronous (FS), Fixed Asynchronous
(FA), Adaptive Synchronous (AS), and Adaptive Asynchro-
nous (AA). The first term in this nomenclature refers to
whether the prefetching algorithm adaptively chooses the
prefetch size. The second term refers to whether prefetch-
ing is carried out synchronously or asynchronously. Binny
noted that although AA prefetching algorithms show the
most promise for sequential streams, they have rarely been
implemented in practice.

Next, Binny quickly described a formal analysis showing
how best to adaptively choose the prefetch size, p, and

8o ;LOGIN: VOL. 32, NO. 3

Junel7loginlsummaries_press.gxd:login summaries 5/27/07 10:?E:AM Page 80

prefetch trigger distance, g, for each independent stream
when using an AA prefetching algorithm. This information
was then used to describe the Adaptive Multi-Prefetching
(AMP) algorithm. This algorithm adapts the prefetch size
by decreasing the value of p whenever a prefetched page
reaches the end of the LRU list unaccessed. To minimize
wasted prefetches, such unaccessed prefetched pages are
also moved back to the head of the LRU list and marked as
“old” when they fall off the end of the LRU list. Con-
versely, the value of p is incremented whenever the last
page read within a given read /O hits in cache and the
cache block hit is not “old.” The size by which p is incre-
mented is the size of the read operation in pages. The
prefetch trigger distance, g, is incremented whenever a
prefetch returns only to find that a read request is already
waiting for some page in the prefetch set. The value of g is
decremented when p is decremented.

Finally, Binny showed that the AMP algorithm easily out-
performs the other classes of prefetching algorithms on
several different workloads. These workloads included a
sequential stream workload, a workload with many short
sequential sequences, the SPC-1 Read workload, and the
SPC-2 Video on Demand workload.

During the Q&A session, John Wilkes from HP Labs asked
whether the authors had tried to use AMP on mixed work-
loads. Binny responded that they hadn’t explored this
space yet, but that the SPC-1 Read workload, on which
AMP performed well, is not a strictly sequential workload.

B Nache: Design and Implementation of a Caching Proxy for
NFSv4

Ajay Gulati, Rice University; Manoj Naik and Renu Tewari,
IBM Almaden Research Center

Sharing data across wide area networks (WANs) is becom-
ing very common; however, a common problem with WAN
file sharing is high latency. A common solution used to re-
duce latency in WANSs involves installing a caching proxy
close to the client, but many protocols available for use by
the caching proxy and the server, such as CIFS and
NFSv2/v3, are optimized for local area networks (LANs),
not WANS. As a result, these protocols tend to be “chatty”
and result in suboptimal performance. In this talk, Ajay
Gulati described why NFSv4 is a good choice for the pro-
tocol that should be used between caching proxies and
servers and then proceeded to describe the design and im-
plementation of such a NFSv4 caching proxy (Nache).

Gulati stated that NFSv4 is useful in a caching proxy setup
because it provides read/write delegations and compound
requests. A write delegation for a file issued to a client by
an NFSv4 server gives the client the authority to modify
that file locally without interacting with the server until
the delegation is revoked. Similarly, a read delegation for a
file issued to a client allows the client to read the file with-
out continually checking cache consistency. For cases

o

where sharing of files among clients is uncommon, delega-
tions can greatly improve performance. Compound re-
quests allow multiple related requests to be batched into a
single request; such requests are suited for WANs as they
generate less overall network traffic and per-command
round-trip delays than the case in which each request con-
tained in the compound request is issued separately.

Ajay then described Nache, a caching proxy for NFSv4
that sits between local clients and a remote server. Nache,
in some sense, relies on receiving delegations from the
server for the files accessed by its clients. If it does receive
these delegations, it can proceed to serve the clients locally
without communicating with the server.

Nache is implemented via cascaded mounts. Nache
mounts the data exported by the remote server and then
re-exports this mount to clients. This means that when a
client request must be forwarded from the Nache to the re-
mote server, the request must first be translated from an
NESv4 request to a VES call and then back to an NFSv4 re-
quest. This translation works without issue in most cases;
however, some stateful NFSv4 requests (e.g., OPEN,
CLOSE, LOCK, REQUEST) require special handling.

Ajay then proceeded to provide an evaluation of both
Nache and delegation performance in NFSv4. He showed
that delegations can greatly reduce the number of opera-
tions at the remote server, but that the cost of issuing a
delegation is high. Hence, delegations are useful as long as
the server does not have to revoke them often (owing to
conflicting accesses, etc.). The authors evaluated Nache by
using the filebench benchmark, which was used to approx-
imate both a Web-based workload and an OLTP workload,
and by executing a software build on the clients. The re-
sults showed that as long as more than one client is used,
the fraction of total operations generated by clients sent to
the remote server was substantially reduced. Finally, the
authors measured response time over the WAN when exe-
cuting the software build. They found that the server re-
sponse time decreased as the number of clients used in-
creased.

One attendee asked what would happen if the remote
server were to revoke the delegations issued to Nache.
Ajay responded that Nache would then stop acting as a
proxy and start acting as a simple passthrough.

BEYOND THE MACHINE ROOM

Summarized by Andrew Leung (aleung@soe.ucsc.edu)
B TFS: A Transparent File System for Contributory Storage

James Cipar, Mark D. Corner; and Emery D. Berger, University
of Massachusetts, Amherst

Awarded Best Paper!

James Cipar discussed how contributory applications such
as Folding@home and Freenet utilize a user’s unused local

;LOGIN: JUNE 2007

Junel7loginlsummaries_press.gxd:login summaries 5/27/07 10:$AM Page 81

disk space to contribute to a common distributed system.
This disk utilization intrudes on users’ personal free space
as well as impacting normal application performance.
Namely, as used disk space increases, the file system’s abil-
ity to make ideal block allocation decisions decreases. This
leads to disk layout fragmentation, which has a very nega-
tive impact on disk access times. James continued by say-
ing that for users to want to use contributory applications,
these applications must not consume too much disk space.

To address this issue the authors presented the Transparent
File System (TFS), an on-disk file system that allows users
to contribute disk space with minimal performance im-
pact. James outlined the goals of TFS: to make contribu-
tory data transparent, meaning their presence has no im-
pact on filesystem performance or capacity; to allow con-
tributory data to be overwritten when space for user data
is needed; and to make such data compatible with legacy
contributory applications. To facilitate overwriting of con-
tributory data, TFS uses five block allocation states to
specify whether data is contributory, contributory and
overwritten by user data, or overwritten contributory data
that has been deleted. James evaluates the contributions of
TFS with respect to a watermarking approach and using
fixed contribution space. The two key metrics are the
amount of storage capacity contributed and bandwidth.
Their figures show TFS is able to contribute more space, as
well as maintaining higher bandwidth. To examine local
filesystem performance, the Andrew Benchmark is used
against different amounts of data contribution. James pre-
sents the TFS run time for several benchmark phases, each
of which is better than or comparable to ext2 with or with-
out any contributory application running.

Brent Callaghan from Apple asked whether TFS could be
used as a Web browser cache. James replied that in fact
they had tried to use TFS as a browser cache but that be-
cause browser cache size is generally small the effects are
negligible. Another question related to files that are open
for extended periods of time. Since TFS does not overwrite
contributory data from an open file it is conceivable that a
contributory application could cause fragmentation. James
confirmed that this is the case but that perhaps some effort
should be made to ensure that contributory applications
do not hold files open too long. Binny Gill from IBM Re-
search asked whether ext2 had to be modified. James said
that indeed ext2 was modified and that porting TFS to an-
other file system would require the source code. A second
question was whether movie data from sources such as
BitTorrent is affected by TFS. James answered that BitTor-
rent data is user data, rather than contributory data, and
therefore TES does not affect it; rather, BitTorrent con-
sumes other resources, such as bandwidth during uploads.
Finally, James provided a link to more TFS information
and source code: http:/prisms.cs.umass.edu/tcsm/.

CONFERENCE SUMMARIES

o

81

B Cobalt: Separating Content Distribution from Authorization
in Distributed File Systems

Kaushik Veeraraghaven, Andrew Myrick, and Jason Flinn,
University of Michigan

Kaushik Veeraraghavan presented a solution for secure
mobile content access. In addition to accessing digital con-
tent from personal devices, Kaushik said that users often
wish to access content from other devices to share media
with friends or family. He described how these ad hoc
clients, which are devices such as MP3 players or laptops
that a user does not own or rarely uses, make access to
digital data difficult. The current data distribution and
authorization model makes accessing data from ad hoc
clients difficult because the ad hoc client must be used to
explicitly locate and fetch remote content after searching
for it over a slow, wide-area link. Kaushik described how
digital rights management adds additional complexity by
forcing users to authenticate themselves at each ad hoc de-
vice, opening the door for possible abuse, and often re-
quires the user to jump through hoops to play back the
content. What makes protected content special is that the
goals of users and content providers are largely orthogonal.
Users desire easy and pervasive access to their data, where-
as providers do not want data leaked to any unauthorized
device or user.

To address this, Kaushik described a shift in paradigm
where people, rather than clients, are authenticated. Their
solution, Cobalt, relies on a Cobalt token, such as a cell
phone or PDA, which is carried by the user, allowing au-
thentication to be based on proximity. Kaushik said the
goal of Cobalt is to improve usability, privacy, and content
protection. This relies on trusting the Cobalt token and
ad hoc media players, each of which has a Trust Platform
Module (TPM) chip that allows content providers to verify
the integrity of the Cobalt token. Kaushik described their
current implementation on the Blue File System. The Co-
balt token manages content acquisition, where the provid-
er forwards encrypted content to either the token or a
more powerful helper computer. Playing the content re-
quires the token to identify all media players in range, se-
lect a specific media, and send either the data from the
token or the IP address of the helper computer to the
media player.

Evaluation of Cobalt aims at understanding the overhead
of content acquisition and content playback and any new
applications that Cobalt may enable. The content acquisi-
tion has a fixed 10-second overhead that scales linearly
with file size. Kaushik attributes most of this cost to the
establishment of a secure connection. Associating a media
player with the token and specifying content to share re-
quires about 12 seconds. Finally, Kaushik describes how
Cobalt can be used to adaptively merge many users’ play-
lists into a single playlist, enjoyable by all. Each user speci-
fies a query and only songs that appear in all query results
are played.

82 ;LOGIN: VOL. 32, NO. 3

Junel7loginlsummaries_press.gxd:login summaries 5/27/07 10:$AM Page 82

Peter Honeyman from the University of Michigan asked
about clarifying whether it is the TPM or the media player
that is trusted, since the media player can still steal unen-
crypted content. Kaushik responded that the media player
must also be trusted and that ideally DRM is enforced all
the way until it reaches the user’s ear but that this obvi-
ously cannot be done. Brent Welch from Panasas asked if
Cobalt would make it possible to steal media from TiVo, to
which Kaushik replied that TiVo does not have a TPM
chip, which makes it untrusted. Daniel Ellard from Net-
work Appliance asked about how content can be retrieved
should the Cobalt token be lost. Kaushik said content
providers could deauthorize the token or one could en-
crypt the content key and resynchronize with a new token.
Finally, Craig Everhart from Network Appliance wondered
how Cobalt defined media players in range and whether it
would be possible to accidentally access a neighbor’s media
player. Kaushik responded that it is indeed possible but
that simply registering tokens with specific media players
could alleviate that problem.

MAKING THE RAID

Summarized by Charles Weddle (weddle@cs.fsu.edu)
B PARAID: A Gear-Shifting Power-Aware RAID

Charles Weddle, Mathew Oldham, Jin Qian, and An-1 Andy
Wang, Florida State University; Peter Reiher, University of
California, Los Angeles; Geoff Kuenning, Harvey Mudd
College

Charles Weddle began his talk by discussing the increasing
concern of energy consumption in server-class machines.
Storage systems account for a significant part of the energy
consumption in servers. In fact, storage systems account
for 24% of the power usage in Web servers and 27% of the
electricity cost for data centers. The authors hypothesize
that it is possible to reduce energy consumption in RAID
devices without degrading performance, while maintaining
reliability. The three main challenges in this problem are
finding opportunities to save energy in active servers, pre-
serving peak performance, and maintaining reliability. The
existing work mostly trades performance for energy sav-
ings directly, for example by varying the speeds of disks.
The authors took advantage of three observations to help
provide a solution to this problem. First, conventional
RAID overprovisions resources: A conventional RAID
keeps all disks spinning even under light load. Second, un-
used storage exists on storage servers because of overpro-
visioning. This unused storage can be used for energy sav-
ings. Third, workloads have a cyclic fluctuation. Infre-
quent disk power transitions during periods of light load
can save energy.

The authors present the power-aware RAID (PARAID) as a
solution to this problem. PARAID introduces skewed strip-
ing that allows PARAID to power off disks during periods
of light load. Skewed striping replicates blocks in unused

o

storage, allowing disks to be powered off. Skewed striping
creates sets of disks of varying sizes, where each disk set is
thought of as a gear. Skewed striping allows PARAID to
match performance to workload by switching into different
gears. PARAID preserves peak performance by operating in
the highest gear, with all disks in the array, when the sys-
tem is under peak load. PARAID maintains reliability by
reusing existing RAID levels, for example RAID level 5.
The authors implemented a PARAID prototype in Linux
2.6.5 for evaluation. The PARAID components reside be-
tween the conventional RAID device driver and the disk
device driver. The evaluation was performed by replaying a
Web trace and a Cello99 trace and running the Postmark
benchmark. For the Web trace experiments the PARAID
device, using RAID level 0, was compared to a conven-
tional RAID level 0 device and was found to reduce energy
consumption by up to 34%. For the Cello99 experiments
the PARAID device, using RAID level 5, was compared to a
conventional RAID level 5 device, yielding up to 13% en-
ergy savings. PARAID is ongoing work and the authors
would like to test PARAID under more workloads. Also,
the authors would like to put PARAID into a production
environment for live testing.

Bill Bolosky from Microsoft asked why the latency CDF
graphs for the Web trace experiments have sustained
peaks. Charles responded that this was caused by a small
number of Web requests never finishing owing to the way
the Web trace playback program handles certain errors.
Keith Smith from Network Appliance asked whether RAID
level 4 would make disk power transitions easier. Charles
responded that it might help alleviate the overhead of cas-
cading parity updates. Carl Waldspurger from VMware
asked how the optimal gear configuration is chosen.
Charles explained that gear optimization is ongoing work
and that iterating over gear configurations using simula-
tion might help with this problem.

B REO: A Generic RAID Engine and Optimizer

Deepak Kenchammana-Hosekote, IBM Almaden Research Cen-
ter; Dingshan He, Microsoft; James Lee Hafner, IBM Almaden
Research Center

Deepak Kenchammana began his talk by discussing the
need for a variety of RAID codes. No single RAID code sat-
isfies all aspects of data storage in terms of storage effi-
ciency, reliability, and performance. Also, as data sets grow,
using the same RAID code is not practical because disk
failures grow with capacity. A greater variety of RAID
codes are needed to provide high data reliability using less
reliable disks. This is challenging because it is expensive to
support several RAID codes. The current mindset is that
deploying new RAID codes is expensive and risky. The au-
thors present the RAID Engine Optimizer (REO) as a solu-
tion to this problem. REO can handle any XOR-based
RAID codes, including N-way mirroring. REO automati-
cally handles all RAID-related errors and leverages dy-

;LOGIN: JUNE 2007

Junel7loginlsummaries_press.gxd:login summaries 5/27/07 10:$AM Page 83

namic-state-like current cache pages. REO offers competi-
tive performance, yielding ~8% speedup for SPC-1-like
workloads.

REO comprises a set of routines invoked by cache on read
(on miss), write (flush), rebuild, and migrate. REO rou-
tines deal with all necessary RAID translations and execu-
tions. REO extends the idea that it is efficient to simulta-
neously flush dirty pages in cache that belong to the same
stripe by defining a W-neighborhood for the victim page.
The W-neighborhood is defined as the set of all pages,
clean or dirty, in the data cache that are in a 2W + 1 stripe
window centered on the victim’s stripe. REO is made up of
a RAID engine and an execution engine. The RAID engine
determines the best strategy for what is to be done and the
execution engine figures out how it gets done. Input into
the execution engine from the RAID engine is an 1/0O plan
that contains the set of blocks to be read, a set of blocks to
be XOR-ed, and a set of blocks to be written. The read
strategy for fault-free read is straightforward: Just read it
from disk. The challenge with read is the reconstruct case.
The write strategy involves identifying all affected parity
elements for dirty elements to be written. For every af-
fected parity element there are two update strategies: Par-
ity Compute (PC) and Parity Increment (PI). The execu-
tion engine takes the 1/O plan and acquires stripe locks, al-
locates cache pages, submits reads in the read set, executes
XORs in the XOR set, and finally submits the writes in the
write set. If an error is detected during the execution of an
I/O plan, the execution engine aborts the 1/O plan and re-
submits the I/0 plan to the RAID engine. The RAID engine
contains an I/O plan optimizer that is responsible for pick-
ing the least-cost read or write strategy. Some metrics used
for optimization are the number of I/O commands (I0C)
submitted to the storage devices and the number of XOR
operations. REO was evaluated through trace-driven simu-
lations. The authors built the data cache and REO compo-
nents for evaluation; Disksim was used to simulate disk
/0. The optimization objective for evaluation was to mini-
mize disk I/O (I0C). Two measures were used in evalua-
tion: total access time and total memory bus usage. REO
showed a 10% improvement in disk access time for a fault-
free RAID 5 layout and a 7% improvement for a RAID 5
layout with one disk failure.

The first questioner asked what REO would do under page
pressure (thrashing). Deepak answered that REO would do
nothing worse than any other RAID firmware would do.
One way to reduce the additional pages needed to com-
plete in-progress writes is to reduce the window size. If
that does not help then you are really stuck with operating
at a point where things will complete, albeit slowly. To the
second question, whether the authors considered having
REO look more broadly into the file cache, Deepak an-
swered no. In response to whether there was any chance of
seeing the source code, Deepak stated that he is sure that
IBM has plans for it to be made public.

CONFERENCE SUMMARIES

o

83

B PRO: A Popularity-Based Multi-Threaded Reconstruction
Optimization for RAID-Structured Storage Systems

Lei Tian and Dan Feng, Huazhong University of Science and
Technology; Hong Jiang, University of Nebraska—Lincoln; Ke
Zhou, Lingfang Zeng, Jianxi Chen, and Zhikun Wang, Hua-
zhong University of Science and Technology and Wuhan
National Laboratory for Optoelectronics; Zhenlei Song,
Huazhong University of Science and Technology

Hong Jiang began his talk by discussing the importance of
data recovery. Disk failures have become more common in
RAID-structured storage systems. The improvement in
disk capacity has far outpaced improvements in disk band-
width, lengthening the overall RAID recovery time. Also,
disk drive reliability has improved slowly, resulting in a
very high overall failure rate in a large-scale RAID storage
system. Disk-oriented reconstruction (DOR) is one of the
existing 1/0 parallelism-based recovery mechanisms. DOR
follows a sequential order of stripes in reconstruction, re-
gardless of user access patterns. Workload access patterns
need to be considered because 80% of the accesses are di-
rected to 20% of the data, according to Pareto’s Principle,
and 10% of the files accessed on a Web server typically ac-
count for 90% of the server requests. The authors present
a popularity-based multi-threaded reconstruction opti-
mization (PRO) that takes advantage of data popularity to
improve reconstruction performance. PRO divides data
units on the spare disks into hot zones. Each hot zone has
a reconstruction thread. The priority of each thread is dy-
namically adjusted according to the current popularity of
its hot zone. PRO keeps track of the user accesses and ad-
justs the popularity of each hot zone accordingly. PRO se-
lects the reconstruction thread with the highest priority
and allocates a time slice to it. When a thread’s time slice
runs out, PRO assigns a time slice to the next highest pri-
ority thread. The process repeats until all of the data units
have been rebuilt. Priority-based scheduling is used so that
the reconstruction regions are always the hottest regions.
Time-slicing is used to exploit the I/O bandwidth of hard
disks and access locality.

PRO was compared to DOR in the evaluation because
DOR is arguably the most effective among the existing re-
construction algorithms. The evaluation of PRO examined
reconstruction performance by measuring user response
time, reconstruction time, and algorithm complexity. PRO
was integrated into the original DOR approach imple-
mented in the RAIDframe software to validate and evaluate
PRO. The evaluation was performed by replaying three dif-
ferent Web traces that consisted of read-only Web search
activity. It was found that PRO consistently outperformed
DOR in reconstruction and user response time by up to
44.7% and 23.9%, respectively. PRO’ effectiveness relies
on the existence of popularity and locality in the workload
as well as the intensity of the workload. PRO also uses
extra memory for each thread descriptor. The computation

84 ;LOGIN: VOL. 32, NO. 3

Junel7loginlsummaries_press.gxd:login summaries 5/27/07 10:?E:AM Page 84

overhead of PRO is O(n), although if a priority queue is
used in the PRO algorithm the computation overhead can
be reduced to O(log n). The entire PRO implementation in
the RAIDFrame software only added 686 lines of code.
Work on PRO is ongoing. Future work includes optimiz-
ing the time slice, scheduling strategies, and hot zone
length. Currently, PRO is being ported into the Linux soft-
ware RAID. Finally, the authors plan on further investigat-
ing use of access patterns to help predict user accesses and
of filesystem semantic knowledge to explore accurate re-
construction.

The first questioner asked about the average rate of recov-
ery for PRO. Hong answered that the average reconstruc-
tion time is several hundred seconds in the experimental
setup. The second questioner asked how well PRO recon-
struction compares to DOR reconstruction under no work-
load. Hong commented that when there is no workload
the reconstruction performance for PRO and DOR is the
same. In response to a question about write overhead,
Hong stated that his research team is actively looking into
this. The last question involved the sensitivity of the re-
sults to the number of threads and to the time slice. Hong
explained that the impact of the number of threads and
time slice is negligible in the current experimental configu-
ration. However, a more elaborate sensitivity study is un-
derway in the project.

o

