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Abstract 

This paper proposes and evaluates a novel dynamic 
data reconstruction optimization algorithm, called 
popularity-based multi-threaded reconstruction optimi-
zation (PRO), which allows the reconstruction process 
in a RAID-structured storage system to rebuild the fre-
quently accessed areas prior to rebuilding infrequently 
accessed areas to exploit access locality. This approach 
has the salient advantage of simultaneously decreasing 
reconstruction time and alleviating user and system 
performance degradation. It can also be easily adopted 
in various conventional reconstruction approaches. In 
particular, we optimize the disk-oriented reconstruction 
(DOR) approach with PRO. The PRO-powered DOR is 
shown to induce a much earlier onset of response-time 
improvement and sustain a longer time span of such 
improvement than the original DOR. Our benchmark 
studies on read-only web workloads have shown that 
the PRO-powered DOR algorithm consistently outper-
forms the original DOR algorithm in the failure-
recovery process in terms of user response time, with a 
3.6%~23.9% performance improvement and up to 
44.7% reconstruction time improvement simultaneously. 

1. Introduction 

Reliability and availability are the most common issues 
that administrators of storage systems are concerned 
with and directly affect the end users of such systems. 
Frequent or long downtimes and data losses are clearly 
intolerable to the end users. Research has shown that 50 
percent of companies losing critical systems for more 
than 10 days never recover, 43 percent of companies 
experiencing a disaster never reopen, and 29 percent of 
the remaining close within two years [1]. For some 
companies that do survive long-term performance deg-
radation, the resulting penalties can become too costly 
to ignore. For example, for data services at a large-scale 
data center, a typical Service Level Agreement speci-
fies the percentage of transaction response times that 

can exceed a threshold (e.g. seconds), and the penalties 
for failing to comply can be very costly [2]. 

As a result, redundant storage systems, such as RAID 
[3], have been widely deployed to prevent catastrophic 
data losses. Various RAID schemes employ mirroring, 
parity-encoding, hot spare and other mechanisms [4] to 
tolerate the failures of disk drives. If a disk failure oc-
curs, RAID will automatically switch to a recovery 
mode, often at a degraded performance level, and acti-
vate a background reconstruction process for data re-
covery. The reconstruction process will rebuild data 
units of the failed disk onto the replacement disk while 
RAID continues to serve I/O requests from clients. Af-
ter all of the contents are rebuilt, RAID returns the sys-
tem to the normal operating mode. 

Advances in storage technology have significantly re-
duced cost and improved performance and capacity of 
storage devices, making it possible for system designers 
to build extremely large storage systems comprised of 
tens of thousands or more disks with high I/O perform-
ance and data capacity. However, reliability of individ-
ual disk drives has improved very slowly, compared to 
the improvement in their capacity and cost, resulting in 
a very high overall failure rate in a system with tens of 
thousands of disk drives. To make matters worse, the 
time to rebuild a single disk has lengthened as increases 
in disk capacity far outpace increases in disk bandwidth, 
lengthening the “window of vulnerability” during 
which a subsequent disk failure (or a series of subse-
quent disk failures) causes data loss [5]. Furthermore, 
many potential applications of data replication or mi-
gration, such as on-line backup and capacity manage-
ment, are faced with similar challenges as the recon-
struction process. 

Therefore, the efficiency of the reconstruction algo-
rithm affects the reliability and performance of RAID-
structured storage systems directly and significantly. 
The goals of reconstruction algorithms are (1) to mini-
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mize the reconstruction time to ensure system reliability 
and (2) to minimize the performance degradation to 
ensure user and system performance, simultaneously. 
Existing effective approaches, such as disk-oriented 
reconstruction (DOR) [6] and pipelined reconstruction 
(PR) [7], optimize the recovery workflow to improve 
the reconstruction process’s parallelism. Based on 
stripe-oriented reconstruction (SOR) [8], both DOR 
and PR execute a set of reconstruction processes to 
rebuild data units by exploiting parallelism in processes 
and pipelining. While they both exploit reconstruction 
parallelism, the problem of optimizing reconstruction 
sequence remains unsolved. In a typical recovery mode, 
the reconstruction process rebuilds data units while 
RAID continues to serve I/O requests from the clients, 
where clients’ accesses can adversely and severely af-
fect the reconstruction efficiency because serving cli-
ents’ I/O requests and reconstruction I/O requests si-
multaneously leads to frequent long seeks to and from 
the multiple separate data areas. Optimizing the recon-
struction sequence with users’ workload characteristics, 
we believe, is a key in improving existing and widely-
used reconstruction approaches such as those men-
tioned above. 

In this paper, we propose a Popularity-based multi-
threaded Reconstruction Optimization (PRO) algorithm 
to optimize the existing reconstruction approaches, 
which exploits I/O workload characteristics to guide the 
reconstruction process. The main idea behind our PRO 
algorithm is to reconstruct high-popularity data units of 
a failed disk, which are the most frequently accessed 
units in terms of the workload characteristics, prior to 
reconstructing other units. Furthermore, by fully ex-
ploring the access patterns, the PRO algorithm has the 
potential to recover many units ahead of users’ accesses 
with high probability to avoid performance degradation 
caused by recovery. 

To the best of our knowledge, little research effort has 
been directed towards integrating workload characteris-
tics into the reconstruction algorithm. Most of the exist-
ing reconstruction algorithms perform a sequential re-
construction on the failed disk regardless of the work-
load characteristics. Taking into account the workload 
distribution (such as spatial locality, temporal locality, 
etc.), the PRO approach attains a flexible and pertinent 
reconstruction strategy that attempts to reduce recon-
struction time while alleviating the performance degra-
dation. PRO achieves this by inducing a much earlier 
onset of response-time performance improvement and 
sustaining a longer time span of such improvement 
while reducing reconstruction time during recovery.  

We implement the PRO algorithm based on DOR, and 
our benchmark studies on read-only web workloads 
have shown that the PRO algorithm outperforms DOR 
by 3.6%~ 23.9% in user response time and by up to 
44.7% in reconstruction time, simultaneously. Because 
the PRO algorithm is specifically designed to only gen-
erate the optimal reconstruction sequence based on 
workload characteristics without any modification to 
the reconstruction workflow or data layout, it can be 
easily incorporated into most existing reconstruction 
approaches of RAID and achieve significant improve-
ment on system reliability and response time perform-
ance. 

The rest of this paper is organized as follows. Related 
work and motivation are presented in Section 2. In Sec-
tion 3, we describe the algorithm and implementation 
of the PRO approach. Performance evaluation and dis-
cussions are presented in Section 4. We conclude the 
paper in section 5 by summarizing the main contribu-
tions of this paper and pointing out directions for future 
research. 

2. Related Work and Motivation 

In this section, we first present the background and 
related work on the reconstruction issues. Second, we 
reveal the ubiquitous properties of popularity and local-
ity of typical workloads and thus elucidate the motiva-
tions for our research. 

2.1. Existing Reconstruction Approaches 
 
There has been substantial research reported in the lit-
erature on reliability and recovery mechanisms in 
RAID or RAID-structured storage systems. Since the 
advent of disk arrays and RAID, researchers have been 
working to improve reliability and availability of such 
systems by devising efficient reconstruction algorithms 
for the recovery process, with several notable and ef-
fective outcomes. 

There are two general approaches to disk array recon-
struction depending on the source of improvement. The 
first general approach improves performance by reor-
ganizing the data layout of spare or parity data units 
during recovery. 

Hou et al. [9] considered an approach to improving 
reconstruction time, called distributed sparing. Instead 
of using a dedicated spare disk which is unused in the 
normal mode, they distribute the spare space evenly 
across the disk array. Their approach can result in im-
proved response times and reconstruction times because 
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one extra disk is available for normal use and less data 
needs to be reconstructed on a failure. As an extension 
to the distributed sparing approach in large-scale dis-
tributed storage systems, Xin et al. [10] presented a fast 
recovery mechanism (FARM) to dramatically lower the 
probability of data loss in large-scale storage systems. 

The second general approach improves performance by 
optimizing the reconstruction workflow. Because this 
approach needs not modify the data organization of 
RAID, it is more prevalent in RAID implementations. 
Therefore, it is also the approach that our proposed 
algorithm will be based on. 

Disk-oriented reconstruction (DOR) and pipelined re-
construction (PR) are two representative and widely-
used reconstruction approaches. The DOR algorithm 
was proposed by Holland [11] to address the deficien-
cies of both the single-stripe and parallel-stripe recon-
struction algorithms (SOR). Instead of creating a set of 
reconstruction processes associated with stripes, the 
array controller creates a number of processes, with 
each associated with one disk. The advantage of this 
approach is that it is able to maintain one low-priority 
request in the queue for each disk at all times, thus be-
ing able to absorb all of the array’s bandwidth that is 
not absorbed by the users. Although DOR outperforms 
SOR in reconstruction time, the improvement in reli-
ability comes at the expense of performance in user 
response times. 

To address the reliability issue of continuous-media 
servers, Lee and Lui [7] presented a track-based recon-
struction algorithm to rebuild lost data in tracks. In ad-
dition, they presented a pipelined reconstruction (PR) 
algorithm to reduce the extra buffers required by the 
track-based reconstruction algorithm. Muntz and Lui 
[12] conducted a performance study on reconstruction 
algorithms using an analytical model. Their first en-
hancement, reconstruction with redirection of reads, 
uses the spare disk to service disk requests to the failed 
disk if the requested data has already been rebuilt to the 
spare disk. They also proposed to piggyback rebuild 
requests on a normal workload. If a data block on the 
failed disk is accessed and has not yet been rebuilt to 
the spare disk, the data block is regenerated by reading 
the corresponding surviving disks. It is then a simple 
matter of also writing this data block to the spare disk. 

The basic head-following algorithm [11] attempts to 
minimize head positioning time by reconstructing data 
and parity in the region of the array currently being 
accessed by the users. The problem with this approach 
is that it leads to almost immediate deadlock of the re-

construction process. Since the workload causes the 
disk heads to be uncorrelated with respect to each other, 
head following causes each reconstruction process to 
fetch a reconstruction unit from a different parity stripe. 
The buffers are filled with data units from different 
parity stripes and hard to be freed, and so reconstruc-
tion deadlocks. 

Assuming that the probability of a second disk failure 
(while the first failed disk is under repair) is very low, 
Kari et al. [13] presented a delayed repair method to 
satisfy the response time requirement, which introduced 
a short delay between repair requests to limit the num-
ber of repair read (or write) requests that any user disk 
request might need to wait. With regard to RAID-
structured storage systems, it may not be practical to 
adopt such a delayed repair method directly because of 
the relatively high probability of a second disk failure. 

To address the problem of performance degradation 
during recovery, Vin et al. [14] integrated the recovery 
process with the decompression of video streams, 
thereby distributing the reconstruction process across 
the clients to utilize the inherent redundancy in video 
streams. From the viewpoint of a file system’s semantic 
knowledge, Sivathanu et al. [15] proposed a live-block 
recovery approach in their D-GRAID, which changes 
the recovery process to first recover those blocks which 
are live ( i.e., belong to allocated files or directories). 

Of the above related work on disk array reconstruction 
or recovery based on reconstruction workflow optimi-
zations, the DOR algorithm still dominates in its appli-
cations and implementations; whereas, the others can 
be arguably considered either rooted at DOR or DOR’s 
extensions or variations. In general, while DOR ab-
sorbs the disk array’s bandwidth, its variations attempt 
to take advantage of user accesses. On the other hand, 
our proposed PRO algorithm improves over these ap-
proaches by not only preserving the inherent sequen-
tiality of the reconstruction process, but also dynami-
cally scheduling multiple reconstruction points and 
considering the reconstruction priority. What’s more 
important, the PRO algorithm makes use of the access 
locality in I/O workloads, which is ignored by the 
above reconstruction algorithms, and improves the re-
sponse-time performance and the reliability perform-
ance simultaneously. 

2.2. Popularity and Locality of Workloads 
 
A good understanding of the I/O workload characteris-
tics can provide a useful insight into the reason behind 
DOR’s inability to minimize application’s performance 
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degradation, thus helping us improve the DOR algo-
rithm and other related algorithms to address this prob-
lem. In particular, workload characteristics such as tem-
poral locality and spatial locality can be exploited to 
alleviate performance degradation while reducing re-
construction time. Experience with traditional computer 
system workloads has shown the importance of tempo-
ral locality to computer design [16]. 

In many application environments, 80% accesses are 
always directed to 20% of the data, a phenomenon that 
has long been known as Pareto’s Principle or “The 
80/20 Rule” [17]. Pareto’s Principle points to the exis-
tence of temporal locality and spatial locality in various 
kinds of I/O workloads. The presence of access locality 
in I/O workloads has been well known in the literature. 
Gomez & Santonja [17] studied three sets of I/O traces 
provided by Hewlett-Packard Labs, and showed that 
some of the blocks are extremely hot and popular while 
other blocks are rarely or never accessed. In the media 
workload, Cherkasova and Gupta [18] found that 
14%~30% of the files accessed on the server accounted 
for 90% of the media sessions and 92%~94% of the 
bytes transferred, and were viewed by 96%~97% of the 
unique clients. 

Studies have further indicated that access locality is 
more pronounced in workload characteristics of web 
servers [19], and identified three distinct types of web 
access locality, namely, static, spatial and temporal 
locality. Static locality refers to the observation that 
10% of files accessed on a web server typically account 
for 90% of the server requests and 90% of the bytes 
transferred [20]. Roselli et al. [21] found that for all 
workloads, file access patterns are bimodal in that most 
files tend to be mostly-read or mostly-written. The web 
workload has far more read bandwidth than any other 
workload but has relatively little write bandwidth. Sika-
linda et al. [22] found that in the web search workload 
almost all the operations are reads (i.e., 99.98% of the 
total number of operations). Since typical on-line trans-
action processing type (OLTP-like) workloads are read-
dominated [13], the load on the surviving disks in-
creased by typically between 50-100% in the presence 
of a disk failure. This severely degrades the perform-
ance as observed by the users, and dramatically length-
ens the period of time required to recover the lost data 
and store it on a replacement disk. 

Motivated by insightful observations made by other 
researchers and by our own research, we propose to 
integrate temporal locality and spatial locality into the 
reconstruction algorithms to improve their effectiveness. 
If the frequently accessed data units could be recon-

structed prior to reconstructing all others, the effect of 
performance degradation can be potentially hidden 
from the users in their subsequent accesses to the same 
data units, especially during the recovery process. 

3. Design and Implementation of PRO 

Due to the aforementioned shortcomings of existing 
parallel reconstruction approaches (such as DOR and 
PR), a solution must be sought to optimize the recon-
struction sequence. Based on prior research by other 
researchers and by us, we believe that the key to our 
solution is to exploit the workload characteristics into 
the reconstruction algorithm. By making an appropriate 
connection between the external workload and the in-
ternal reconstruction I/O activities, we propose a Popu-
larity-based multi-threaded Reconstruction Optimiza-
tion algorithm (PRO) to combine the locality of the 
workloads with the sequentiality of the reconstruction 
process. 

The main idea behind the PRO algorithm is to monitor 
and keep track of the dynamic popularity changes of 
data areas, thus directing the reconstruction process to 
rebuild highly popular data units of a failed disk, prior 
to rebuilding other units. More specifically, PRO di-
vides data units on the replacement disk into multiple 
non-overlapping but consecutive data areas, called “hot 
zones”. Correspondingly, PRO employs multiple inde-
pendent reconstruction threads, where each reconstruc-
tion thread is responsible for one of the hot zones and 
the priority of each thread is determined by the latest 
frequency of users’ accesses to its hot zone. The PRO 
algorithm adopts a priority-based time-sharing schedul-
ing algorithm to schedule the reconstruction threads. 
The scheduler activates the thread with the highest pri-
ority periodically by allocating a time slice to the thread 
that begins rebuilding the remaining data units of its hot 
zones until the time slice is used up. 

Different from the strictly sequential sequence of most 
existing reconstruction approaches, PRO generates a 
workload-following reconstruction sequence to exploit 
the locality of workload characteristics. 

In this section, we first outline the design principles 
behind PRO, which is followed by a detailed descrip-
tion of the PRO algorithm via an example, as well as an 
overview of PRO’s implementation. 

3.1. Design Principles 
 
As Holland concluded [11], a reconstruction algorithm 
must preserve the inherent sequentiality of the  
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Figure 1: Reconstruction thread descriptor. 

reconstruction process, since a disk drive is able to ser-
vice sequential accesses at many times the bandwidth 
of random accesses. This leads to the development of 
the disk-oriented reconstruction (DOR) algorithm and 
the pipelined reconstruction (PR) algorithm, and to the 
rejection of the head-following approaches. On the 
other hand, to take full advantage of locality of access 
in the I/O workload, we believe that a reconstruction 
algorithm should rebuild data units with high-
popularity prior to rebuilding low-popularity or no-
popularity data units on the failed disk. Consequently, 
frequent long seeks to and from the multiple separate 
popular data areas result in seek and rotation penalties 
for multiple reconstruction points.  

To strike a good balance between the above two seem-
ingly conflicting goals of maintaining sequentiality and 
exploiting access locality, the PRO algorithm effec-
tively combines “global decentralization” with “local 
sequentiality” in the reconstruction process. Inspired by 
the design principles of classical time-sharing operating 
systems, PRO adopts the ideas of “divide and conquer” 
and “time-sharing scheduling” to achieve the above 
goals. 

3.2. The Reconstruction Algorithm 
 
To obtain an optimal reconstruction sequence, PRO 
tracks the popularity changes of data areas and gener-
ates a workload-following reconstruction sequence to 
combine locality with sequentiality. 

A description of the PRO algorithm is given as follows. 

First, PRO divides data units on the replacement disk 
into multiple non-overlapping but consecutive data 
areas called “hot zones” (the algorithm for defining the 
appropriate number of hot zones is described in Section 
3.4), with each being associated with a popularity 
measure determined by the latest frequency of users’ 
accesses to it. Correspondingly, the entire reconstruc-
tion process is divided into multiple independent recon-
struction threads with each being responsible for re-
building one of the hot zones. The priority of a recon-
struction thread is dynamically adjusted according to 
the current popularity of its hot zone. Similar to a real 
thread in operating systems, each reconstruction thread 
has its reconstruction thread descriptor (see Figure 1  
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Figure 2: A snapshot of the PRO algorithm at work. 

that shows its data structure and content) that includes 
properties such as status, priority, time slice, etc. 

Second, once all of the reconstruction threads are ini-
tialized, a reconstruction scheduler selects the recon-
struction thread with the highest priority and allocates a 
time slice to it, which activates this thread to rebuild the 
remaining data units of its hot zone until the time slice 
is used up. If the thread runs out of its time slice, the 
reconstruction scheduler suspends it, re-selects the re-
construction thread that has the current highest priority, 
and allocates one time slice to it. This process repeats 
until all the data units have been rebuilt. Figure 2 is a 
snapshot of the PRO algorithm at work. From Figure 2, 
one can see three reconstruction threads and their re-
spective hot zones with different popularity. Because 
the hot zone of the middle thread has the highest popu-
larity, the thread is switched to the running state and 
allocated a time slice by the reconstruction scheduler. 
At the same time, the other two threads are suspended 
due to their low popularity. 

The PRO approach uses the reconstruction threads to 
track the popularity changes of the hot zones and al-
ways picks up the most popular data area to rebuild 
prior to rebuilding others, thus achieving the goal of 

fully exploiting access locality based on popularity (via 
global decentralization) during the reconstruction proc-
ess. 

A time slice in PRO is always associated with a number 
of the consecutive data units. In our implementation, a 
time slice is set to be 64, that is, 64 consecutive data 
units. With this approach, PRO achieves the goal of 
maintaining local sequentiality of the reconstruction 
process. 

After the above step, the data units in the reconstruction 
queue are workload-following and locally sequential. 

3.3. The PRO Structure and Procedures 
 
The PRO architecture consists of three key components: 
Access Monitor (AM), Reconstruction Scheduler (RS) 
and Reconstruction Executor (RE). AM is responsible 
for capturing and analyzing clients’ access locality and 
adjusting popularities of the corresponding hot zones. 
The responsibility of RS is to select data units of the 
hot zone with the highest popularity, or the most fre-
quently-accessed data units, generate the corresponding 
tasks and put them into a FIFO reconstruction task 
queue. The main function of RE is to fetch jobs from 
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the reconstruction task queue and rebuild the corre-
sponding units on the replacement disk. The operations 
of each of the three PRO components are detailed be-
low. 

Access Monitor (AM): 

Repeat 
1. AM receives the I/O request and determines its 
type and address information. 
2. If the type is read and the address is located 
on the failed disk, increase the popularity of the corre-
sponding hot zone (including this address). 
Until (the failed disk has been reconstructed) 
 

Reconstruction Scheduler (RS): 

Repeat 
1. Check the time slice of the reconstruction 
thread whose status is running. 
2. If the thread has no time slice left, select the 
reconstruction thread with the highest popularity from 
all reconstruction threads, and allocate a time slice to it. 
At the same time, reset the popularity of all reconstruc-
tion threads to zero. 
3. Set the status of the chosen reconstruction 
thread to the running state, and set the status of other 
threads to the suspended state. Meanwhile, reduce the 
remaining time slice of the chosen reconstruction 
thread by one. 
4. The chosen reconstruction thread begins re-
building a remaining data units in its hot zone, generat-
ing a corresponding reconstruction job to obtain this 
reconstruction unit, and queuing it to the tail of the 
reconstruction job queue. 
5. If all data units in this hot zone are recon-
structed, reclaim the chosen reconstruction and its hot 
zone. 
Until (the failed disk has been reconstructed) 
 

Reconstruction Executor (RE): 

In fact, the functions of RE are the same as those of the 
DOR algorithm except for the following subtle differ-
ence: RE chooses the next job from the queue, not the 
sequentially next data unit one by one as the DOR algo-
rithm. The disk array controller creates C processes, 
each associated with one disk. Each of the C-1 proc-
esses associated with a surviving disk executes the fol-
lowing loop: 

Repeat 

1. Fetch the next job from the reconstruction job 
queue on this disk that is needed for reconstruction. 
2. Issue a low-priority request to read the indi-
cated unit into a buffer. 
3. Wait for the read to complete. 
4. Submit the unit’s data to a centralized buffer 
manager for XOR, or Block the process if the buffer is 
full. 
Until (all necessary units have been read) 
 

The process associated with the replacement disk exe-
cutes the following operations: 

Repeat 
1. Request sequentially the next full buffer from 
the buffer manager. 
2. Issue a low-priority write of the buffer to the 
replacement disk. 
3. Wait for the write to complete. 
Until (the failed disk has been reconstructed) 
 
3.4. Implementation Issues 
 
How is the popularity data collected, stored, up-
dated? 
Whenever the reconstruction process starts, the Access 
Monitor begins to track and evaluate the statistics of 
clients’ accesses to the failed disk. The popularity data 
of each hot zone is stored in the “popularity” counter of 
the hot zone. It can keep better track of the dynamic 
changes of popular data areas if the popularity data is 
collected, stored and updated even after the reconstruc-
tion process starts. This, however, leads to a 2% to 4% 
system performance loss (similar to the impact of the 
I/O trace tools) while the probability of a disk failure is 
relatively low. 

Once a client accesses a hot zone, the value of its popu-
larity counter is increased by one. Each time the recon-
struction scheduler finishes a thread scheduling proce-
dure, all the popularity counters of hot zones are reset 
to zeros to be ready for a new round of monitoring. 
This implies that short-term, rather than long-term, 
popularity history is captured by the PRO implementa-
tion. This is based on our belief that the former is more 
important than the latter during recovery because cur-
rent or recent past popularity change tends to point to 
newly and rapidly accessed data areas that should be 
reconstructed more urgently. 

How many zones are used? 
In PRO, hot zones are fully dynamically created, up-
dated and reused, including the corresponding  
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Component Description 
CPU Intel Pentium4 3GHz 
Memory 512M DDR SDRAM 
SCSI HBA LSIlogic 22320R 
SCSI Disk Seagate ST3146807LC 
OS NetBSD 2.1 
RAID software RAIDframe [26] 

Table 1: The platform for performance evaluation. 

reconstruction threads. At the beginning of the recovery 
process, there is no reconstruction thread or hot zone. 

When a client accesses a data unit, say, numbered N, on 
the failed disk, a thread will be created and initiated, 
along with its corresponding hot zone of default length 
L and range N to N+L. After initialization, the recon-
struction thread switches to the alive status and waits 
for scheduling. If a client accesses a data unit belonging 
to this hot zone, its popularity will be increased by one. 
But if a client accesses a data unit not belonging to any 
of the existing hot zones, a new thread, along with its 
new hot zone, will be initialized and created in a man-
ner described above. Assuming that the data unit is 
numbered M, if M<N and N-M<L, the range of the 
newly created hot zone is set to be M to N-M to ensure 
non-overlapping between two adjacent hot zones, else 
the range is set to be M to M+L. In the other words, the 
default length L is the maximum threshold. When all 
data units in a hot zone are rebuilt, the hot zone and the 
corresponding reconstruction thread will be reclaimed 
for the reuse purpose. 

Clearly, the number and length of hot zones are not 
fixed but dynamically adjusted by the workload. In the 
implementation, we set the maximum length of a hot 
zone to 1024 and the maximum number of hot zones 
(thus of the reconstruction threads) to 128, that is, the 
PRO algorithm can track the popularity changes of 128 
data areas simultaneously. 

How are threads scheduled? 
The PRO algorithm adopts a priority-based time-
sharing scheduling algorithm to schedule multiple re-
construction threads. It must be noted that the PRO 
algorithm’s scheduler bases its selection decision 
mostly on a thread’s priority (or its corresponding 
zone’s popularity). 

4. Performance Evaluations 

This section presents results of a comprehensive ex-
perimental study comparing the proposed PRO-
powered DOR algorithm (PRO for short) with the 

original DOR algorithm. To the best of our knowledge, 
the DOR algorithm is arguably the most effective 
among existing reconstruction algorithms in part be-
cause it is implemented in many software and hardware 
RAID products [23-25] and most widely studied in the 
literature. This performance study analyzes reconstruc-
tion performance in terms of user response time and 
reconstruction time, and algorithm complexity. 

4.1. Experimental Setup 
 
We conducted our performance evaluation of the two 
algorithms above on a platform of server-class hard-
ware and software (see Table 1). The speed of the Sea-
gate ST3146807LC disks is 10000 rpm, its average 
seek time is 4.7ms, and its capacity is 147GB. We use 2 
SCSI channels and each channel attaches 5 disks. 

Because the NetBSD platform has no appropriate 
benchmark to replay the I/O trace, we implemented a 
block-level replay tool, RAIDmeter, to evaluate per-
formances of the two reconstruction algorithms since 
most databases run not on a file system but on the raw 
devices directly. The main function of RAIDmeter is to 
replay the traces and evaluate the I/O response time, 
that is, to open the block device, send the designated 
read/write requests to the device in terms of the time-
stamp and request type of each I/O event in the trace, 
wait for the completion of the I/O requests and gather 
the corresponding I/O results, such as the response time, 
throughput and so on. Since the NetBSD 2.1 operating 
system cannot support read or write operations to files 
larger than 2GB, it is very inconvenient to benchmark 
the performance of disk arrays consisting of hard drives 
with hundreds of GB capacity each. As a result, we had 
to limit the capacity of every disk to 5GB. In addition, 
RAIDmeter adopts the approach of randread [27] to 
overcome the capacity limitation to support I/O ac-
cesses to files of tens of GBs. We believe that RAID-
meter is the best block-level trace-replay tool available 
for the current NetBSD platform. 

4.2. Methodology and Workload 
 
We evaluated our design by running trace-driven 
evaluations over the web I/O traces identified from the 
Storage Performance Council [28] because the web 
workloads tend to most pronouncedly reveal the nature 
of locality. These traces were collected from a system 
running a web search engine, and they are all read-
dominant and with high locality. Because of the abso-
lute read-domination (99.98%) in all of the web-search-
engine I/O traces, we filtered out the write requests and 
feed only read events to our RAIDmeter replay tool.  
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Trace Name Number of  
Requests 

Popularity (20% most active area by size  
handles so much of total requests) 

Average Inter-Arrival Time 
 (ms) 

Web Trace 1 842,535 69.99% 3.74 
Web Trace 2 999,999 70.12% 3.73 
Web Trace 3 999,999 69.89% 5.71 

Table 2: The characteristics of three web traces. 

Reconstruction Time (second) 

Web Trace 1 Web Trace 2 Web Trace 3 RAID 
Level 

Number  
of

Disks 
DOR PRO improved DOR PRO improved DOR PRO improved

3 1123.8 666.5 40.7% 1058.3 585.2 44.7% 452.3 351.6 22.3% 

5 457.4 353.1 22.8% 374.5 304.1 18.8% 242.8 203.9 16.0% 

7 344.0 319.1 7.2% 325.7 278.5 14.5% 238.2 210.8 11.5% 
RAID5 

9 243.5 240.3 1.3% 231.5 215.3 7.0% 192.4 184.5 4.1% 

RAID1 2 1208.1 1157.7 4.2% 938.0 870.1 7.3% 424.2 409.5 3.7% 

Table 3: A comparison of PRO and DOR reconstruction times as a function of the number of disks. 

Average User Response Time during recovery (millisecond) 

Web Trace 1 Web Trace 2 Web Trace 3 RAID 
Level 

Number  
of  

Disks 
DOR PRO improved DOR PRO improved DOR PRO improved

3 31.8 24.2 23.9% 28.5 23.9 16.0% 27.4 23.1 15.6% 

5 21.7 19.3 11.1% 21.0 18.7 11.0% 20.0 17.8 11.3% 

7 25.0 23.8 5.1% 22.5 21.4 4.5% 22.6 20.0 11.8% 
RAID5 

9 19.1 18.2 4.5% 19.6 17.3 11.5% 19.5 18.8 3.6% 

RAID1 2 29.5 28.2 11.1% 21.4 20.6 11.0% 18.8 17.8 11.3% 

Table 4: A comparison of PRO and DOR user response times as a function of the number of disks. 

Owing to the relatively short reconstruction times in 
our current experimental setup, it may not be necessary 
to use the full daily-level traces. Thus, we only reserved 
the beginning part of the traces with lengths appropriate 
for our current reconstruction experiments. Table 2 
shows the relevant information of the web-search-
engine I/O traces. 

4.3. Reconstruction Performance 
 
We first conducted our performance evaluation of the 
two reconstruction algorithms on a platform of a 
RAID-5 disk array consisting of variable number of 
disks and 1 hot-spare disk, with a stripe unit size of 
64KB and a RAID-1 disk array consisting of 2 disks 
and 1 hot-spare disk, with a stripe unit of 64KB. 

Tables 3 and 4 show the measured reconstruction times 
and user response times of DOR and PRO, respectively, 
and reveal the efficacy of the PRO algorithm in im-
proving the array’s reconstruction time and user re-
sponse time simultaneously during recovery. Across all 
given workloads, RAID levels and disk numbers in our 
experiments, the PRO algorithm almost consistently 
outperforms the DOR algorithm in reconstruction time 
and user response time by up to 44.7% and 23.9%, re-
spectively. 

It is not uncommon that a second disk drive can fail 
shortly after a first disk failure in a very large-scale 
RAID-structured storage system, and thus it is very 
important to shorten the reconstruction time to avoid a  
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Figure 3 (a), (b), (c): A comparison of PRO and DOR user response time as a function of the respective traces: web trace 1, 2 and 3. In all of the 
figures, the bottom columns mean the I/O intensity of the trace and the two curves mean the PRO and DOR user response time trend during re-
covery. The RAID-5 disk array consists of 3 disks and 1 hot-spare disk, with a stripe unit size of 64KB. 
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In summary, by exploiting access locality the PRO al-
gorithm consistently outperforms the DOR algorithm 
both in reliability and in performance during recovery. 

4.4. Complexity Analysis 
 
Space Complexity 
Because the PRO approach is based on the implementa-
tion of the DOR algorithm, the memory requirements 
are almost the same as that for the latter. Compared 
with DOR, PRO requires extra memory only for the 
storage of reconstruction thread descriptors. In our ac-
tual implementation, each thread descriptor consumes 
1KB memory, and if we set the maximum threshold of 
the number of threads to 128 (as is in our implementa-
tion), the extra memory needed for the PRO approach 
is about 128KB. 

Time Complexity 
Since the time for each thread-scheduling event is 
mostly consumed in the selection of the highest-priority 
thread from all of the candidate threads, we can esti-
mate approximately that the computation overhead of 
the PRO algorithm is O(n), where n is the total number 
of the existing threads. If we use a priority queue, the 
computation complexity can be reduced to O(logn).
However, the computation overhead will be negligible 
on a modern processor compared with the enormous 
I/O latency of a disk. 

Implementation Complexity 
We briefly quantify the implementation complexity of 
PRO. Table 5 lists the lines of code, counted by the 
number of semicolons and braces, which are modified 
or added to the RAIDframe. From the table, one can 
see that very few additions and modifications are 
needed to add to the reconstruction module. It is clear 
that most of the complexity is found in the Reconstruc-
tion Scheduler, because this module is in fact the bridge 
between the Access Monitor and the Reconstruction 
Executor, and its functions are shared with these mod-
ules. Compared with the 39691 lines of the RAIDframe 
implementation, the modifications for PRO occupy 
only 1.7 % of the total lines. 

5. Conclusion 

The recovery mechanism of RAID becomes increas-
ingly more critical to the reliability and availability of 
storage systems. System administrators demand a solu-
tion that can reconstruct the entire content of a failed 
disk as quickly as possible and, at the same time, alle-
viate performance degradation during recovery as much  

Component Mod. 
Lines 

Add. 
Lines 

Total 
Lines 

AM 0 84 84
RS 0 590 590
RE 2 12 14
Total 2 686 688

Table 5: Code complexity for the DOR modifications in the RAID-
frame. 

as possible. However, it is very difficult to achieve 
these two goals simultaneously. 

In this paper, we developed and evaluated a novel dy-
namic reconstruction optimization algorithm for redun 
dant disk arrays, called a Popularity-based multi-
threaded Reconstruction Optimization algorithm (PRO). 
The PRO algorithm exploits the access locality of I/O 
workload characteristics, which is ubiquitous in real 
workloads, especially in the web server environment. 
The PRO algorithm allows the reconstruction process 
to rebuild the frequently-accessed areas prior to build-
ing infrequently-accessed areas. Our experimental 
analysis shows that the PRO algorithm results in a 3.6% 
~ 23.9% user performance improvements during recov-
ery over the DOR algorithm. Further, PRO leads to a 
much earlier onset of performance improvement and 
longer time span of such improvement than DOR dur-
ing recovery. More importantly, PRO can reduce the 
reconstruction time of DOR by up to 44.7%. By effec-
tively exploiting access locality, the PRO algorithm 
accomplishes the goal of simultaneous improvement of 
reliability and user and system performance. 

However, the PRO algorithm in its current form may 
not be suitable for all types of workloads, for example, 
it will not likely work well under write-dominated 
workload. A good solution for write-dominated work-
load remains one of our directions for future research 
on PRO. In addition, current PRO only integrates the 
access locality into the reconstruction algorithm, with-
out distinguishing or predicting access patterns. We 
believe that PRO’s effectiveness can be increased if the 
access patterns are discovered, predicted, and incorpo-
rated into the reconstruction process, which is another 
direction of our future research. 
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