
PRO: A Popularity-based Multi-threaded Reconstruction Optimization for
RAID-Structured Storage Systems

Lei Tian†‡, Dan Feng†‡, Hong Jiang§, Ke Zhou†‡,
Lingfang Zeng†‡, Jianxi Chen†‡, Zhikun Wang†‡, Zhenlei Song†

†Huazhong University of Science and Technology
‡Wuhan National Laboratory for Optoelectronics

§University of Nebraska-Lincoln
E-mail:{dfeng, k.zhou, ltian}@hust.edu.cn, jiang@cse.unl.edu

Abstract

This paper proposes and evaluates a novel dynamic
data reconstruction optimization algorithm, called
popularity-based multi-threaded reconstruction optimi-
zation (PRO), which allows the reconstruction process
in a RAID-structured storage system to rebuild the fre-
quently accessed areas prior to rebuilding infrequently
accessed areas to exploit access locality. This approach
has the salient advantage of simultaneously decreasing
reconstruction time and alleviating user and system
performance degradation. It can also be easily adopted
in various conventional reconstruction approaches. In
particular, we optimize the disk-oriented reconstruction
(DOR) approach with PRO. The PRO-powered DOR is
shown to induce a much earlier onset of response-time
improvement and sustain a longer time span of such
improvement than the original DOR. Our benchmark
studies on read-only web workloads have shown that
the PRO-powered DOR algorithm consistently outper-
forms the original DOR algorithm in the failure-
recovery process in terms of user response time, with a
3.6%~23.9% performance improvement and up to
44.7% reconstruction time improvement simultaneously.

1. Introduction

Reliability and availability are the most common issues
that administrators of storage systems are concerned
with and directly affect the end users of such systems.
Frequent or long downtimes and data losses are clearly
intolerable to the end users. Research has shown that 50
percent of companies losing critical systems for more
than 10 days never recover, 43 percent of companies
experiencing a disaster never reopen, and 29 percent of
the remaining close within two years [1]. For some
companies that do survive long-term performance deg-
radation, the resulting penalties can become too costly
to ignore. For example, for data services at a large-scale
data center, a typical Service Level Agreement speci-
fies the percentage of transaction response times that

can exceed a threshold (e.g. seconds), and the penalties
for failing to comply can be very costly [2].

As a result, redundant storage systems, such as RAID
[3], have been widely deployed to prevent catastrophic
data losses. Various RAID schemes employ mirroring,
parity-encoding, hot spare and other mechanisms [4] to
tolerate the failures of disk drives. If a disk failure oc-
curs, RAID will automatically switch to a recovery
mode, often at a degraded performance level, and acti-
vate a background reconstruction process for data re-
covery. The reconstruction process will rebuild data
units of the failed disk onto the replacement disk while
RAID continues to serve I/O requests from clients. Af-
ter all of the contents are rebuilt, RAID returns the sys-
tem to the normal operating mode.

Advances in storage technology have significantly re-
duced cost and improved performance and capacity of
storage devices, making it possible for system designers
to build extremely large storage systems comprised of
tens of thousands or more disks with high I/O perform-
ance and data capacity. However, reliability of individ-
ual disk drives has improved very slowly, compared to
the improvement in their capacity and cost, resulting in
a very high overall failure rate in a system with tens of
thousands of disk drives. To make matters worse, the
time to rebuild a single disk has lengthened as increases
in disk capacity far outpace increases in disk bandwidth,
lengthening the “window of vulnerability” during
which a subsequent disk failure (or a series of subse-
quent disk failures) causes data loss [5]. Furthermore,
many potential applications of data replication or mi-
gration, such as on-line backup and capacity manage-
ment, are faced with similar challenges as the recon-
struction process.

Therefore, the efficiency of the reconstruction algo-
rithm affects the reliability and performance of RAID-
structured storage systems directly and significantly.
The goals of reconstruction algorithms are (1) to mini-

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 277

mize the reconstruction time to ensure system reliability
and (2) to minimize the performance degradation to
ensure user and system performance, simultaneously.
Existing effective approaches, such as disk-oriented
reconstruction (DOR) [6] and pipelined reconstruction
(PR) [7], optimize the recovery workflow to improve
the reconstruction process’s parallelism. Based on
stripe-oriented reconstruction (SOR) [8], both DOR
and PR execute a set of reconstruction processes to
rebuild data units by exploiting parallelism in processes
and pipelining. While they both exploit reconstruction
parallelism, the problem of optimizing reconstruction
sequence remains unsolved. In a typical recovery mode,
the reconstruction process rebuilds data units while
RAID continues to serve I/O requests from the clients,
where clients’ accesses can adversely and severely af-
fect the reconstruction efficiency because serving cli-
ents’ I/O requests and reconstruction I/O requests si-
multaneously leads to frequent long seeks to and from
the multiple separate data areas. Optimizing the recon-
struction sequence with users’ workload characteristics,
we believe, is a key in improving existing and widely-
used reconstruction approaches such as those men-
tioned above.

In this paper, we propose a Popularity-based multi-
threaded Reconstruction Optimization (PRO) algorithm
to optimize the existing reconstruction approaches,
which exploits I/O workload characteristics to guide the
reconstruction process. The main idea behind our PRO
algorithm is to reconstruct high-popularity data units of
a failed disk, which are the most frequently accessed
units in terms of the workload characteristics, prior to
reconstructing other units. Furthermore, by fully ex-
ploring the access patterns, the PRO algorithm has the
potential to recover many units ahead of users’ accesses
with high probability to avoid performance degradation
caused by recovery.

To the best of our knowledge, little research effort has
been directed towards integrating workload characteris-
tics into the reconstruction algorithm. Most of the exist-
ing reconstruction algorithms perform a sequential re-
construction on the failed disk regardless of the work-
load characteristics. Taking into account the workload
distribution (such as spatial locality, temporal locality,
etc.), the PRO approach attains a flexible and pertinent
reconstruction strategy that attempts to reduce recon-
struction time while alleviating the performance degra-
dation. PRO achieves this by inducing a much earlier
onset of response-time performance improvement and
sustaining a longer time span of such improvement
while reducing reconstruction time during recovery.

We implement the PRO algorithm based on DOR, and
our benchmark studies on read-only web workloads
have shown that the PRO algorithm outperforms DOR
by 3.6%~ 23.9% in user response time and by up to
44.7% in reconstruction time, simultaneously. Because
the PRO algorithm is specifically designed to only gen-
erate the optimal reconstruction sequence based on
workload characteristics without any modification to
the reconstruction workflow or data layout, it can be
easily incorporated into most existing reconstruction
approaches of RAID and achieve significant improve-
ment on system reliability and response time perform-
ance.

The rest of this paper is organized as follows. Related
work and motivation are presented in Section 2. In Sec-
tion 3, we describe the algorithm and implementation
of the PRO approach. Performance evaluation and dis-
cussions are presented in Section 4. We conclude the
paper in section 5 by summarizing the main contribu-
tions of this paper and pointing out directions for future
research.

2. Related Work and Motivation

In this section, we first present the background and
related work on the reconstruction issues. Second, we
reveal the ubiquitous properties of popularity and local-
ity of typical workloads and thus elucidate the motiva-
tions for our research.

2.1. Existing Reconstruction Approaches

There has been substantial research reported in the lit-
erature on reliability and recovery mechanisms in
RAID or RAID-structured storage systems. Since the
advent of disk arrays and RAID, researchers have been
working to improve reliability and availability of such
systems by devising efficient reconstruction algorithms
for the recovery process, with several notable and ef-
fective outcomes.

There are two general approaches to disk array recon-
struction depending on the source of improvement. The
first general approach improves performance by reor-
ganizing the data layout of spare or parity data units
during recovery.

Hou et al. [9] considered an approach to improving
reconstruction time, called distributed sparing. Instead
of using a dedicated spare disk which is unused in the
normal mode, they distribute the spare space evenly
across the disk array. Their approach can result in im-
proved response times and reconstruction times because

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association278

one extra disk is available for normal use and less data
needs to be reconstructed on a failure. As an extension
to the distributed sparing approach in large-scale dis-
tributed storage systems, Xin et al. [10] presented a fast
recovery mechanism (FARM) to dramatically lower the
probability of data loss in large-scale storage systems.

The second general approach improves performance by
optimizing the reconstruction workflow. Because this
approach needs not modify the data organization of
RAID, it is more prevalent in RAID implementations.
Therefore, it is also the approach that our proposed
algorithm will be based on.

Disk-oriented reconstruction (DOR) and pipelined re-
construction (PR) are two representative and widely-
used reconstruction approaches. The DOR algorithm
was proposed by Holland [11] to address the deficien-
cies of both the single-stripe and parallel-stripe recon-
struction algorithms (SOR). Instead of creating a set of
reconstruction processes associated with stripes, the
array controller creates a number of processes, with
each associated with one disk. The advantage of this
approach is that it is able to maintain one low-priority
request in the queue for each disk at all times, thus be-
ing able to absorb all of the array’s bandwidth that is
not absorbed by the users. Although DOR outperforms
SOR in reconstruction time, the improvement in reli-
ability comes at the expense of performance in user
response times.

To address the reliability issue of continuous-media
servers, Lee and Lui [7] presented a track-based recon-
struction algorithm to rebuild lost data in tracks. In ad-
dition, they presented a pipelined reconstruction (PR)
algorithm to reduce the extra buffers required by the
track-based reconstruction algorithm. Muntz and Lui
[12] conducted a performance study on reconstruction
algorithms using an analytical model. Their first en-
hancement, reconstruction with redirection of reads,
uses the spare disk to service disk requests to the failed
disk if the requested data has already been rebuilt to the
spare disk. They also proposed to piggyback rebuild
requests on a normal workload. If a data block on the
failed disk is accessed and has not yet been rebuilt to
the spare disk, the data block is regenerated by reading
the corresponding surviving disks. It is then a simple
matter of also writing this data block to the spare disk.

The basic head-following algorithm [11] attempts to
minimize head positioning time by reconstructing data
and parity in the region of the array currently being
accessed by the users. The problem with this approach
is that it leads to almost immediate deadlock of the re-

construction process. Since the workload causes the
disk heads to be uncorrelated with respect to each other,
head following causes each reconstruction process to
fetch a reconstruction unit from a different parity stripe.
The buffers are filled with data units from different
parity stripes and hard to be freed, and so reconstruc-
tion deadlocks.

Assuming that the probability of a second disk failure
(while the first failed disk is under repair) is very low,
Kari et al. [13] presented a delayed repair method to
satisfy the response time requirement, which introduced
a short delay between repair requests to limit the num-
ber of repair read (or write) requests that any user disk
request might need to wait. With regard to RAID-
structured storage systems, it may not be practical to
adopt such a delayed repair method directly because of
the relatively high probability of a second disk failure.

To address the problem of performance degradation
during recovery, Vin et al. [14] integrated the recovery
process with the decompression of video streams,
thereby distributing the reconstruction process across
the clients to utilize the inherent redundancy in video
streams. From the viewpoint of a file system’s semantic
knowledge, Sivathanu et al. [15] proposed a live-block
recovery approach in their D-GRAID, which changes
the recovery process to first recover those blocks which
are live (i.e., belong to allocated files or directories).

Of the above related work on disk array reconstruction
or recovery based on reconstruction workflow optimi-
zations, the DOR algorithm still dominates in its appli-
cations and implementations; whereas, the others can
be arguably considered either rooted at DOR or DOR’s
extensions or variations. In general, while DOR ab-
sorbs the disk array’s bandwidth, its variations attempt
to take advantage of user accesses. On the other hand,
our proposed PRO algorithm improves over these ap-
proaches by not only preserving the inherent sequen-
tiality of the reconstruction process, but also dynami-
cally scheduling multiple reconstruction points and
considering the reconstruction priority. What’s more
important, the PRO algorithm makes use of the access
locality in I/O workloads, which is ignored by the
above reconstruction algorithms, and improves the re-
sponse-time performance and the reliability perform-
ance simultaneously.

2.2. Popularity and Locality of Workloads

A good understanding of the I/O workload characteris-
tics can provide a useful insight into the reason behind
DOR’s inability to minimize application’s performance

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 279

degradation, thus helping us improve the DOR algo-
rithm and other related algorithms to address this prob-
lem. In particular, workload characteristics such as tem-
poral locality and spatial locality can be exploited to
alleviate performance degradation while reducing re-
construction time. Experience with traditional computer
system workloads has shown the importance of tempo-
ral locality to computer design [16].

In many application environments, 80% accesses are
always directed to 20% of the data, a phenomenon that
has long been known as Pareto’s Principle or “The
80/20 Rule” [17]. Pareto’s Principle points to the exis-
tence of temporal locality and spatial locality in various
kinds of I/O workloads. The presence of access locality
in I/O workloads has been well known in the literature.
Gomez & Santonja [17] studied three sets of I/O traces
provided by Hewlett-Packard Labs, and showed that
some of the blocks are extremely hot and popular while
other blocks are rarely or never accessed. In the media
workload, Cherkasova and Gupta [18] found that
14%~30% of the files accessed on the server accounted
for 90% of the media sessions and 92%~94% of the
bytes transferred, and were viewed by 96%~97% of the
unique clients.

Studies have further indicated that access locality is
more pronounced in workload characteristics of web
servers [19], and identified three distinct types of web
access locality, namely, static, spatial and temporal
locality. Static locality refers to the observation that
10% of files accessed on a web server typically account
for 90% of the server requests and 90% of the bytes
transferred [20]. Roselli et al. [21] found that for all
workloads, file access patterns are bimodal in that most
files tend to be mostly-read or mostly-written. The web
workload has far more read bandwidth than any other
workload but has relatively little write bandwidth. Sika-
linda et al. [22] found that in the web search workload
almost all the operations are reads (i.e., 99.98% of the
total number of operations). Since typical on-line trans-
action processing type (OLTP-like) workloads are read-
dominated [13], the load on the surviving disks in-
creased by typically between 50-100% in the presence
of a disk failure. This severely degrades the perform-
ance as observed by the users, and dramatically length-
ens the period of time required to recover the lost data
and store it on a replacement disk.

Motivated by insightful observations made by other
researchers and by our own research, we propose to
integrate temporal locality and spatial locality into the
reconstruction algorithms to improve their effectiveness.
If the frequently accessed data units could be recon-

structed prior to reconstructing all others, the effect of
performance degradation can be potentially hidden
from the users in their subsequent accesses to the same
data units, especially during the recovery process.

3. Design and Implementation of PRO

Due to the aforementioned shortcomings of existing
parallel reconstruction approaches (such as DOR and
PR), a solution must be sought to optimize the recon-
struction sequence. Based on prior research by other
researchers and by us, we believe that the key to our
solution is to exploit the workload characteristics into
the reconstruction algorithm. By making an appropriate
connection between the external workload and the in-
ternal reconstruction I/O activities, we propose a Popu-
larity-based multi-threaded Reconstruction Optimiza-
tion algorithm (PRO) to combine the locality of the
workloads with the sequentiality of the reconstruction
process.

The main idea behind the PRO algorithm is to monitor
and keep track of the dynamic popularity changes of
data areas, thus directing the reconstruction process to
rebuild highly popular data units of a failed disk, prior
to rebuilding other units. More specifically, PRO di-
vides data units on the replacement disk into multiple
non-overlapping but consecutive data areas, called “hot
zones”. Correspondingly, PRO employs multiple inde-
pendent reconstruction threads, where each reconstruc-
tion thread is responsible for one of the hot zones and
the priority of each thread is determined by the latest
frequency of users’ accesses to its hot zone. The PRO
algorithm adopts a priority-based time-sharing schedul-
ing algorithm to schedule the reconstruction threads.
The scheduler activates the thread with the highest pri-
ority periodically by allocating a time slice to the thread
that begins rebuilding the remaining data units of its hot
zones until the time slice is used up.

Different from the strictly sequential sequence of most
existing reconstruction approaches, PRO generates a
workload-following reconstruction sequence to exploit
the locality of workload characteristics.

In this section, we first outline the design principles
behind PRO, which is followed by a detailed descrip-
tion of the PRO algorithm via an example, as well as an
overview of PRO’s implementation.

3.1. Design Principles

As Holland concluded [11], a reconstruction algorithm
must preserve the inherent sequentiality of the

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association280

Figure 1: Reconstruction thread descriptor.

reconstruction process, since a disk drive is able to ser-
vice sequential accesses at many times the bandwidth
of random accesses. This leads to the development of
the disk-oriented reconstruction (DOR) algorithm and
the pipelined reconstruction (PR) algorithm, and to the
rejection of the head-following approaches. On the
other hand, to take full advantage of locality of access
in the I/O workload, we believe that a reconstruction
algorithm should rebuild data units with high-
popularity prior to rebuilding low-popularity or no-
popularity data units on the failed disk. Consequently,
frequent long seeks to and from the multiple separate
popular data areas result in seek and rotation penalties
for multiple reconstruction points.

To strike a good balance between the above two seem-
ingly conflicting goals of maintaining sequentiality and
exploiting access locality, the PRO algorithm effec-
tively combines “global decentralization” with “local
sequentiality” in the reconstruction process. Inspired by
the design principles of classical time-sharing operating
systems, PRO adopts the ideas of “divide and conquer”
and “time-sharing scheduling” to achieve the above
goals.

3.2. The Reconstruction Algorithm

To obtain an optimal reconstruction sequence, PRO
tracks the popularity changes of data areas and gener-
ates a workload-following reconstruction sequence to
combine locality with sequentiality.

A description of the PRO algorithm is given as follows.

First, PRO divides data units on the replacement disk
into multiple non-overlapping but consecutive data
areas called “hot zones” (the algorithm for defining the
appropriate number of hot zones is described in Section
3.4), with each being associated with a popularity
measure determined by the latest frequency of users’
accesses to it. Correspondingly, the entire reconstruc-
tion process is divided into multiple independent recon-
struction threads with each being responsible for re-
building one of the hot zones. The priority of a recon-
struction thread is dynamically adjusted according to
the current popularity of its hot zone. Similar to a real
thread in operating systems, each reconstruction thread
has its reconstruction thread descriptor (see Figure 1

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 281

Figure 2: A snapshot of the PRO algorithm at work.

that shows its data structure and content) that includes
properties such as status, priority, time slice, etc.

Second, once all of the reconstruction threads are ini-
tialized, a reconstruction scheduler selects the recon-
struction thread with the highest priority and allocates a
time slice to it, which activates this thread to rebuild the
remaining data units of its hot zone until the time slice
is used up. If the thread runs out of its time slice, the
reconstruction scheduler suspends it, re-selects the re-
construction thread that has the current highest priority,
and allocates one time slice to it. This process repeats
until all the data units have been rebuilt. Figure 2 is a
snapshot of the PRO algorithm at work. From Figure 2,
one can see three reconstruction threads and their re-
spective hot zones with different popularity. Because
the hot zone of the middle thread has the highest popu-
larity, the thread is switched to the running state and
allocated a time slice by the reconstruction scheduler.
At the same time, the other two threads are suspended
due to their low popularity.

The PRO approach uses the reconstruction threads to
track the popularity changes of the hot zones and al-
ways picks up the most popular data area to rebuild
prior to rebuilding others, thus achieving the goal of

fully exploiting access locality based on popularity (via
global decentralization) during the reconstruction proc-
ess.

A time slice in PRO is always associated with a number
of the consecutive data units. In our implementation, a
time slice is set to be 64, that is, 64 consecutive data
units. With this approach, PRO achieves the goal of
maintaining local sequentiality of the reconstruction
process.

After the above step, the data units in the reconstruction
queue are workload-following and locally sequential.

3.3. The PRO Structure and Procedures

The PRO architecture consists of three key components:
Access Monitor (AM), Reconstruction Scheduler (RS)
and Reconstruction Executor (RE). AM is responsible
for capturing and analyzing clients’ access locality and
adjusting popularities of the corresponding hot zones.
The responsibility of RS is to select data units of the
hot zone with the highest popularity, or the most fre-
quently-accessed data units, generate the corresponding
tasks and put them into a FIFO reconstruction task
queue. The main function of RE is to fetch jobs from

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association282

the reconstruction task queue and rebuild the corre-
sponding units on the replacement disk. The operations
of each of the three PRO components are detailed be-
low.

Access Monitor (AM):

Repeat
1. AM receives the I/O request and determines its
type and address information.
2. If the type is read and the address is located
on the failed disk, increase the popularity of the corre-
sponding hot zone (including this address).
Until (the failed disk has been reconstructed)

Reconstruction Scheduler (RS):

Repeat
1. Check the time slice of the reconstruction
thread whose status is running.
2. If the thread has no time slice left, select the
reconstruction thread with the highest popularity from
all reconstruction threads, and allocate a time slice to it.
At the same time, reset the popularity of all reconstruc-
tion threads to zero.
3. Set the status of the chosen reconstruction
thread to the running state, and set the status of other
threads to the suspended state. Meanwhile, reduce the
remaining time slice of the chosen reconstruction
thread by one.
4. The chosen reconstruction thread begins re-
building a remaining data units in its hot zone, generat-
ing a corresponding reconstruction job to obtain this
reconstruction unit, and queuing it to the tail of the
reconstruction job queue.
5. If all data units in this hot zone are recon-
structed, reclaim the chosen reconstruction and its hot
zone.
Until (the failed disk has been reconstructed)

Reconstruction Executor (RE):

In fact, the functions of RE are the same as those of the
DOR algorithm except for the following subtle differ-
ence: RE chooses the next job from the queue, not the
sequentially next data unit one by one as the DOR algo-
rithm. The disk array controller creates C processes,
each associated with one disk. Each of the C-1 proc-
esses associated with a surviving disk executes the fol-
lowing loop:

Repeat

1. Fetch the next job from the reconstruction job
queue on this disk that is needed for reconstruction.
2. Issue a low-priority request to read the indi-
cated unit into a buffer.
3. Wait for the read to complete.
4. Submit the unit’s data to a centralized buffer
manager for XOR, or Block the process if the buffer is
full.
Until (all necessary units have been read)

The process associated with the replacement disk exe-
cutes the following operations:

Repeat
1. Request sequentially the next full buffer from
the buffer manager.
2. Issue a low-priority write of the buffer to the
replacement disk.
3. Wait for the write to complete.
Until (the failed disk has been reconstructed)

3.4. Implementation Issues

How is the popularity data collected, stored, up-
dated?
Whenever the reconstruction process starts, the Access
Monitor begins to track and evaluate the statistics of
clients’ accesses to the failed disk. The popularity data
of each hot zone is stored in the “popularity” counter of
the hot zone. It can keep better track of the dynamic
changes of popular data areas if the popularity data is
collected, stored and updated even after the reconstruc-
tion process starts. This, however, leads to a 2% to 4%
system performance loss (similar to the impact of the
I/O trace tools) while the probability of a disk failure is
relatively low.

Once a client accesses a hot zone, the value of its popu-
larity counter is increased by one. Each time the recon-
struction scheduler finishes a thread scheduling proce-
dure, all the popularity counters of hot zones are reset
to zeros to be ready for a new round of monitoring.
This implies that short-term, rather than long-term,
popularity history is captured by the PRO implementa-
tion. This is based on our belief that the former is more
important than the latter during recovery because cur-
rent or recent past popularity change tends to point to
newly and rapidly accessed data areas that should be
reconstructed more urgently.

How many zones are used?
In PRO, hot zones are fully dynamically created, up-
dated and reused, including the corresponding

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 283

Component Description
CPU Intel Pentium4 3GHz
Memory 512M DDR SDRAM
SCSI HBA LSIlogic 22320R
SCSI Disk Seagate ST3146807LC
OS NetBSD 2.1
RAID software RAIDframe [26]

Table 1: The platform for performance evaluation.

reconstruction threads. At the beginning of the recovery
process, there is no reconstruction thread or hot zone.

When a client accesses a data unit, say, numbered N, on
the failed disk, a thread will be created and initiated,
along with its corresponding hot zone of default length
L and range N to N+L. After initialization, the recon-
struction thread switches to the alive status and waits
for scheduling. If a client accesses a data unit belonging
to this hot zone, its popularity will be increased by one.
But if a client accesses a data unit not belonging to any
of the existing hot zones, a new thread, along with its
new hot zone, will be initialized and created in a man-
ner described above. Assuming that the data unit is
numbered M, if M<N and N-M<L, the range of the
newly created hot zone is set to be M to N-M to ensure
non-overlapping between two adjacent hot zones, else
the range is set to be M to M+L. In the other words, the
default length L is the maximum threshold. When all
data units in a hot zone are rebuilt, the hot zone and the
corresponding reconstruction thread will be reclaimed
for the reuse purpose.

Clearly, the number and length of hot zones are not
fixed but dynamically adjusted by the workload. In the
implementation, we set the maximum length of a hot
zone to 1024 and the maximum number of hot zones
(thus of the reconstruction threads) to 128, that is, the
PRO algorithm can track the popularity changes of 128
data areas simultaneously.

How are threads scheduled?
The PRO algorithm adopts a priority-based time-
sharing scheduling algorithm to schedule multiple re-
construction threads. It must be noted that the PRO
algorithm’s scheduler bases its selection decision
mostly on a thread’s priority (or its corresponding
zone’s popularity).

4. Performance Evaluations

This section presents results of a comprehensive ex-
perimental study comparing the proposed PRO-
powered DOR algorithm (PRO for short) with the

original DOR algorithm. To the best of our knowledge,
the DOR algorithm is arguably the most effective
among existing reconstruction algorithms in part be-
cause it is implemented in many software and hardware
RAID products [23-25] and most widely studied in the
literature. This performance study analyzes reconstruc-
tion performance in terms of user response time and
reconstruction time, and algorithm complexity.

4.1. Experimental Setup

We conducted our performance evaluation of the two
algorithms above on a platform of server-class hard-
ware and software (see Table 1). The speed of the Sea-
gate ST3146807LC disks is 10000 rpm, its average
seek time is 4.7ms, and its capacity is 147GB. We use 2
SCSI channels and each channel attaches 5 disks.

Because the NetBSD platform has no appropriate
benchmark to replay the I/O trace, we implemented a
block-level replay tool, RAIDmeter, to evaluate per-
formances of the two reconstruction algorithms since
most databases run not on a file system but on the raw
devices directly. The main function of RAIDmeter is to
replay the traces and evaluate the I/O response time,
that is, to open the block device, send the designated
read/write requests to the device in terms of the time-
stamp and request type of each I/O event in the trace,
wait for the completion of the I/O requests and gather
the corresponding I/O results, such as the response time,
throughput and so on. Since the NetBSD 2.1 operating
system cannot support read or write operations to files
larger than 2GB, it is very inconvenient to benchmark
the performance of disk arrays consisting of hard drives
with hundreds of GB capacity each. As a result, we had
to limit the capacity of every disk to 5GB. In addition,
RAIDmeter adopts the approach of randread [27] to
overcome the capacity limitation to support I/O ac-
cesses to files of tens of GBs. We believe that RAID-
meter is the best block-level trace-replay tool available
for the current NetBSD platform.

4.2. Methodology and Workload

We evaluated our design by running trace-driven
evaluations over the web I/O traces identified from the
Storage Performance Council [28] because the web
workloads tend to most pronouncedly reveal the nature
of locality. These traces were collected from a system
running a web search engine, and they are all read-
dominant and with high locality. Because of the abso-
lute read-domination (99.98%) in all of the web-search-
engine I/O traces, we filtered out the write requests and
feed only read events to our RAIDmeter replay tool.

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association284

Trace Name Number of
Requests

Popularity (20% most active area by size
handles so much of total requests)

Average Inter-Arrival Time
 (ms)

Web Trace 1 842,535 69.99% 3.74
Web Trace 2 999,999 70.12% 3.73
Web Trace 3 999,999 69.89% 5.71

Table 2: The characteristics of three web traces.

Reconstruction Time (second)

Web Trace 1 Web Trace 2 Web Trace 3 RAID
Level

Number
of

Disks
DOR PRO improved DOR PRO improved DOR PRO improved

3 1123.8 666.5 40.7% 1058.3 585.2 44.7% 452.3 351.6 22.3%

5 457.4 353.1 22.8% 374.5 304.1 18.8% 242.8 203.9 16.0%

7 344.0 319.1 7.2% 325.7 278.5 14.5% 238.2 210.8 11.5%
RAID5

9 243.5 240.3 1.3% 231.5 215.3 7.0% 192.4 184.5 4.1%

RAID1 2 1208.1 1157.7 4.2% 938.0 870.1 7.3% 424.2 409.5 3.7%

Table 3: A comparison of PRO and DOR reconstruction times as a function of the number of disks.

Average User Response Time during recovery (millisecond)

Web Trace 1 Web Trace 2 Web Trace 3 RAID
Level

Number
of

Disks
DOR PRO improved DOR PRO improved DOR PRO improved

3 31.8 24.2 23.9% 28.5 23.9 16.0% 27.4 23.1 15.6%

5 21.7 19.3 11.1% 21.0 18.7 11.0% 20.0 17.8 11.3%

7 25.0 23.8 5.1% 22.5 21.4 4.5% 22.6 20.0 11.8%
RAID5

9 19.1 18.2 4.5% 19.6 17.3 11.5% 19.5 18.8 3.6%

RAID1 2 29.5 28.2 11.1% 21.4 20.6 11.0% 18.8 17.8 11.3%

Table 4: A comparison of PRO and DOR user response times as a function of the number of disks.

Owing to the relatively short reconstruction times in
our current experimental setup, it may not be necessary
to use the full daily-level traces. Thus, we only reserved
the beginning part of the traces with lengths appropriate
for our current reconstruction experiments. Table 2
shows the relevant information of the web-search-
engine I/O traces.

4.3. Reconstruction Performance

We first conducted our performance evaluation of the
two reconstruction algorithms on a platform of a
RAID-5 disk array consisting of variable number of
disks and 1 hot-spare disk, with a stripe unit size of
64KB and a RAID-1 disk array consisting of 2 disks
and 1 hot-spare disk, with a stripe unit of 64KB.

Tables 3 and 4 show the measured reconstruction times
and user response times of DOR and PRO, respectively,
and reveal the efficacy of the PRO algorithm in im-
proving the array’s reconstruction time and user re-
sponse time simultaneously during recovery. Across all
given workloads, RAID levels and disk numbers in our
experiments, the PRO algorithm almost consistently
outperforms the DOR algorithm in reconstruction time
and user response time by up to 44.7% and 23.9%, re-
spectively.

It is not uncommon that a second disk drive can fail
shortly after a first disk failure in a very large-scale
RAID-structured storage system, and thus it is very
important to shorten the reconstruction time to avoid a

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 285

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

10

20

30

40

50

DOR End

PRO
DOR
IOPS

ReconstructionTime (second)

U
se

rR
es

po
ns

e
Ti

m
e

(m
ill

is
ec

on
d)

PRO End

200

300

400

500

600

700

800

900

1000

I/O
intensity

ofthe
trace(IO

PS)

0 100 200 300 400 500 600 700 800 900 1000 1100
0

10

20

30

40 DOR EndPRO End
PRO
DOR
IOPS

Reconstruction Time(second)

U
se

rR
es

po
ns

e
Ti

m
e(

m
ill

is
ec

on
d)

150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000

I/O
intensity

ofthe
trace

(IO
P

S
)

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

25

30

35

40 DOR
PRO
IOPS

Reconstruction Time(second)

U
se

rR
es

po
ns

e
Ti

m
e(

m
ill

is
ec

on
d)

100

200

300

400

500

600

700

DOR EndPRO End I/O
intensity

ofthe
trace(IO

P
S)

Figure 3 (a), (b), (c): A comparison of PRO and DOR user response time as a function of the respective traces: web trace 1, 2 and 3. In all of the
figures, the bottom columns mean the I/O intensity of the trace and the two curves mean the PRO and DOR user response time trend during re-
covery. The RAID-5 disk array consists of 3 disks and 1 hot-spare disk, with a stripe unit size of 64KB.

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association286

In summary, by exploiting access locality the PRO al-
gorithm consistently outperforms the DOR algorithm
both in reliability and in performance during recovery.

4.4. Complexity Analysis

Space Complexity
Because the PRO approach is based on the implementa-
tion of the DOR algorithm, the memory requirements
are almost the same as that for the latter. Compared
with DOR, PRO requires extra memory only for the
storage of reconstruction thread descriptors. In our ac-
tual implementation, each thread descriptor consumes
1KB memory, and if we set the maximum threshold of
the number of threads to 128 (as is in our implementa-
tion), the extra memory needed for the PRO approach
is about 128KB.

Time Complexity
Since the time for each thread-scheduling event is
mostly consumed in the selection of the highest-priority
thread from all of the candidate threads, we can esti-
mate approximately that the computation overhead of
the PRO algorithm is O(n), where n is the total number
of the existing threads. If we use a priority queue, the
computation complexity can be reduced to O(logn).
However, the computation overhead will be negligible
on a modern processor compared with the enormous
I/O latency of a disk.

Implementation Complexity
We briefly quantify the implementation complexity of
PRO. Table 5 lists the lines of code, counted by the
number of semicolons and braces, which are modified
or added to the RAIDframe. From the table, one can
see that very few additions and modifications are
needed to add to the reconstruction module. It is clear
that most of the complexity is found in the Reconstruc-
tion Scheduler, because this module is in fact the bridge
between the Access Monitor and the Reconstruction
Executor, and its functions are shared with these mod-
ules. Compared with the 39691 lines of the RAIDframe
implementation, the modifications for PRO occupy
only 1.7 % of the total lines.

5. Conclusion

The recovery mechanism of RAID becomes increas-
ingly more critical to the reliability and availability of
storage systems. System administrators demand a solu-
tion that can reconstruct the entire content of a failed
disk as quickly as possible and, at the same time, alle-
viate performance degradation during recovery as much

Component Mod.
Lines

Add.
Lines

Total
Lines

AM 0 84 84
RS 0 590 590
RE 2 12 14
Total 2 686 688

Table 5: Code complexity for the DOR modifications in the RAID-
frame.

as possible. However, it is very difficult to achieve
these two goals simultaneously.

In this paper, we developed and evaluated a novel dy-
namic reconstruction optimization algorithm for redun
dant disk arrays, called a Popularity-based multi-
threaded Reconstruction Optimization algorithm (PRO).
The PRO algorithm exploits the access locality of I/O
workload characteristics, which is ubiquitous in real
workloads, especially in the web server environment.
The PRO algorithm allows the reconstruction process
to rebuild the frequently-accessed areas prior to build-
ing infrequently-accessed areas. Our experimental
analysis shows that the PRO algorithm results in a 3.6%
~ 23.9% user performance improvements during recov-
ery over the DOR algorithm. Further, PRO leads to a
much earlier onset of performance improvement and
longer time span of such improvement than DOR dur-
ing recovery. More importantly, PRO can reduce the
reconstruction time of DOR by up to 44.7%. By effec-
tively exploiting access locality, the PRO algorithm
accomplishes the goal of simultaneous improvement of
reliability and user and system performance.

However, the PRO algorithm in its current form may
not be suitable for all types of workloads, for example,
it will not likely work well under write-dominated
workload. A good solution for write-dominated work-
load remains one of our directions for future research
on PRO. In addition, current PRO only integrates the
access locality into the reconstruction algorithm, with-
out distinguishing or predicting access patterns. We
believe that PRO’s effectiveness can be increased if the
access patterns are discovered, predicted, and incorpo-
rated into the reconstruction process, which is another
direction of our future research.

Acknowledgments

We would like to thank our shepherd, Andrea C. Ar-
paci-Dusseau, and the anonymous reviewers for their
helpful comments in reviewing this paper. We also
thank Greg Oster (the RAIDframe maintainer in
NetBSD operating system) at the University of Sas-

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 287

katchewan for his insightful suggestions, and thank
Chao Jin, Xiongzi Ge and Qiang Zou for their help in
writing this paper.

This work is sponsored by the National Basic Research
Program of China (973 Program) under Grant No.
2004CB318201, the Key Basic Research Project under
Grant No.2004CCA07400, Project CNGI-04-5-1D,
Program for New Century Excellent Talents in Univer-
sity NCET-04-0693, the China NSF under Grant
No.60273074, No.60503059, No. 60303032, No.
60603048, and the US NSF under Grant No. CCF-
0621526.

References

[1]. D. Wenk. Is ‘Good Enough’ Storage Good
Enough for Compliance? Disaster Recovery Journal.
2004.

[2]. Q. Zhu and Y. Zhou. Chameleon: A Self-
Adaptive Energy-Efficient Performance-Aware RAID.
In Proceedings of the fourth annual Austin Conference
on Energy-Efficient Design(ACEED 2005), Poster Ses-
sion, Austin, Texas, March 1-3, 2005.

[3]. D. Patterson, G. Gibson, and R. Katz. A Case
for Redundant Arrays of Inexpensive Disks (RAID). In
Proceedings of the Conference on Management of Data,
1988.

[4]. G. Gibson, Redundant Disk Arrays: Reliable,
Parallel Secondary Storage. MIT Press, 1992.

[5]. Q. Xin, E. L. Miller, T. J. Schwarz, D. D. E.
Long, S. A.Brandt, and W. Litwin. Reliability mecha-
nisms for very large storage systems. In Proceedings of
the 20th IEEE/11th NASA Goddard Conference on
Mass Storage Systems and Technologies, pages 146–
156, April 2003.

[6]. M. Holland, G. Gibson, and D. Siewiorek.
Fast, On-Line Failure Recovery in Redundant Disk
Arrays. In Proceedings of the International Symposium
on Fault-Tolerant Computing, pages 422-43, 1993.

[7]. Jack Y.B. Lee and John C.S. Lui. Automatic
Recovery from Disk Failure in Continuous-Media
Servers. IEEE Transaction On Parallel And Distributed
Systems, Vol. 13, No. 5, May 2002.

[8]. M. Holland, G.A. Gibson and D. Siewiorek.
Architectures and Algorithms for On-Line Failure Re-
covery in Redundant Disk Arrays. Journal of Distrib-
uted and Parallel Databases, Vol. 2, No. 3, pages 295-
335, July 1994.

[9]. R. Hou, J. Menon, and Y. Patt. Balancing I/O
Response Time and Disk Rebuild Time in a RAID5
Disk Array. In Proceedings of the Hawaii International
Conference on Systems Sciences, pages 70-79, 1993.

[10]. Q. Xin, E. L. Miller and T. J. Schwarz.
Evaluation of Distributed Recovery in Large-Scale
Storage Systems. In Proceedings of the 13th IEEE In-
ternational Symposium on High Performance Distrib-
uted Computing, pages 172-181, June 2004.

[11]. M. Holland. On-Line Data Reconstruction in
Redundant Disk Arrays. Carnegie Mellon Ph.D. Disser-
tation CMU-CS-94-164, April 1994.

[12]. R. Muntz and J. Lui, Performance Analysis of
Disk Arrays Under Failure. In Proceedings of the 16th
Conference on Very Large Data Bases, 1990.

[13]. H. H. Kari, H. K. Saikkonen, N. Park and F.
Lombardi. Analysis of repair algorithms for mirrored-
disk systems. IEEE Transactions on Reliability, Vol 46,
No. 2, pages 193-200, 1997.

[14]. H.M Vin, P.J. Shenoy and S. Rao. Efficient
Failure Recovery in Multi-Disk Multimedia Servers. In
Proceedings of the Twenty-Fifth International Sympo-
sium on Fault-Tolerant Computing, pages 12–21, 1995.

[15]. M. Sivathanu, V. Prabhakaran, F. Popovici, T.
E. Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Improving Storage System Availability with
D-GRAID. In Proceedings of the 3rd USENIX Confer-
ence on File and Storage Technologies (FAST’03), San
Francisco, CA, March 2003.

[16]. A. Smith. Cache Memories. Computing Sur-
veys, Vol 14, No. 3, pages 473–480, 1982

[17]. M. E. Gomez and V. Santonja. Characterizing
Temporal Locality in I/O Workload. In Proceedings of
the 2002 International Symposium on Performance
Evaluation of Computer and Telecommunication Sys-
tems (SPECTS'02). San Diego, USA, July 2002

[18]. L. Cherkasova and M. Gupta. Analysis of En-
terprise Media Server Workloads: Access Patterns,
Locality, Content Evolution, and Rates of Change.
IEEE/ACM Transactions on Networking, Vol, 12, No.
5, October 2004

[19]. L. Cherkasova, G Ciardo. Characterizing
Temporal Locality and its Impact on Web Server Per-
formance. Technical Report HPL-2000-82, Hewlett
Packard Laboratories, July 2000.

[20]. M. Arlitt and C. Williamson. Web server
workload characterization: the search for invariants. In
Proceedings of the ACM SIGMETRICS '96 Conference,
Philadelphia, PA, May 1996.

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association288

katchewan for his insightful suggestions, and thank
Chao Jin, Xiongzi Ge and Qiang Zou for their help in
writing this paper.

This work is sponsored by the National Basic Research
Program of China (973 Program) under Grant No.
2004CB318201, the Key Basic Research Project under
Grant No.2004CCA07400, Project CNGI-04-5-1D,
Program for New Century Excellent Talents in Univer-
sity NCET-04-0693, the China NSF under Grant
No.60273074, No.60503059, No. 60303032, No.
60603048, and the US NSF under Grant No. CCF-
0621526.

References

[1]. D. Wenk. Is ‘Good Enough’ Storage Good
Enough for Compliance? Disaster Recovery Journal.
2004.

[2]. Q. Zhu and Y. Zhou. Chameleon: A Self-
Adaptive Energy-Efficient Performance-Aware RAID.
In Proceedings of the fourth annual Austin Conference
on Energy-Efficient Design(ACEED 2005), Poster Ses-
sion, Austin, Texas, March 1-3, 2005.

[3]. D. Patterson, G. Gibson, and R. Katz. A Case
for Redundant Arrays of Inexpensive Disks (RAID). In
Proceedings of the Conference on Management of Data,
1988.

[4]. G. Gibson, Redundant Disk Arrays: Reliable,
Parallel Secondary Storage. MIT Press, 1992.

[5]. Q. Xin, E. L. Miller, T. J. Schwarz, D. D. E.
Long, S. A.Brandt, and W. Litwin. Reliability mecha-
nisms for very large storage systems. In Proceedings of
the 20th IEEE/11th NASA Goddard Conference on
Mass Storage Systems and Technologies, pages 146–
156, April 2003.

[6]. M. Holland, G. Gibson, and D. Siewiorek.
Fast, On-Line Failure Recovery in Redundant Disk
Arrays. In Proceedings of the International Symposium
on Fault-Tolerant Computing, pages 422-43, 1993.

[7]. Jack Y.B. Lee and John C.S. Lui. Automatic
Recovery from Disk Failure in Continuous-Media
Servers. IEEE Transaction On Parallel And Distributed
Systems, Vol. 13, No. 5, May 2002.

[8]. M. Holland, G.A. Gibson and D. Siewiorek.
Architectures and Algorithms for On-Line Failure Re-
covery in Redundant Disk Arrays. Journal of Distrib-
uted and Parallel Databases, Vol. 2, No. 3, pages 295-
335, July 1994.

[9]. R. Hou, J. Menon, and Y. Patt. Balancing I/O
Response Time and Disk Rebuild Time in a RAID5
Disk Array. In Proceedings of the Hawaii International
Conference on Systems Sciences, pages 70-79, 1993.

[10]. Q. Xin, E. L. Miller and T. J. Schwarz.
Evaluation of Distributed Recovery in Large-Scale
Storage Systems. In Proceedings of the 13th IEEE In-
ternational Symposium on High Performance Distrib-
uted Computing, pages 172-181, June 2004.

[11]. M. Holland. On-Line Data Reconstruction in
Redundant Disk Arrays. Carnegie Mellon Ph.D. Disser-
tation CMU-CS-94-164, April 1994.

[12]. R. Muntz and J. Lui, Performance Analysis of
Disk Arrays Under Failure. In Proceedings of the 16th
Conference on Very Large Data Bases, 1990.

[13]. H. H. Kari, H. K. Saikkonen, N. Park and F.
Lombardi. Analysis of repair algorithms for mirrored-
disk systems. IEEE Transactions on Reliability, Vol 46,
No. 2, pages 193-200, 1997.

[14]. H.M Vin, P.J. Shenoy and S. Rao. Efficient
Failure Recovery in Multi-Disk Multimedia Servers. In
Proceedings of the Twenty-Fifth International Sympo-
sium on Fault-Tolerant Computing, pages 12–21, 1995.

[15]. M. Sivathanu, V. Prabhakaran, F. Popovici, T.
E. Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Improving Storage System Availability with
D-GRAID. In Proceedings of the 3rd USENIX Confer-
ence on File and Storage Technologies (FAST’03), San
Francisco, CA, March 2003.

[16]. A. Smith. Cache Memories. Computing Sur-
veys, Vol 14, No. 3, pages 473–480, 1982

[17]. M. E. Gomez and V. Santonja. Characterizing
Temporal Locality in I/O Workload. In Proceedings of
the 2002 International Symposium on Performance
Evaluation of Computer and Telecommunication Sys-
tems (SPECTS'02). San Diego, USA, July 2002

[18]. L. Cherkasova and M. Gupta. Analysis of En-
terprise Media Server Workloads: Access Patterns,
Locality, Content Evolution, and Rates of Change.
IEEE/ACM Transactions on Networking, Vol, 12, No.
5, October 2004

[19]. L. Cherkasova, G Ciardo. Characterizing
Temporal Locality and its Impact on Web Server Per-
formance. Technical Report HPL-2000-82, Hewlett
Packard Laboratories, July 2000.

[20]. M. Arlitt and C. Williamson. Web server
workload characterization: the search for invariants. In
Proceedings of the ACM SIGMETRICS '96 Conference,
Philadelphia, PA, May 1996.

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 289

[21]. D. Roselli, J. R. Lorch, and T. E. Anderson. A
Comparison of File System Workloads. In Proceedings
of 2000 USENIX Annual Technical Conference. San
Diego, California, USA, June 2000.

[22]. P. G. Sikalinda, L. Walters and P. S. Kritz-
inger. A Storage System Workload Analyzer. Technical
Report CS06-02-00, University of Cape Town, 2006.

[23]. The NetBSD Foundation. The NetBSD Guide.
http://www.netbsd.org/guide/en/chap-rf.html.

[24]. The OpenBSD Foundation. The OpenBSD
FAQ. http://www.se.openbsd.org/faq/faq11.html#raid.

[25]. The FreeBSD Foundation. The FreeBSD/i386
5.3-RELEASE Release Notes.
http://www.freebsd.org/releases/5.3R/relnotes-
i386.html.

[26]. W.V. Courtright II, G.A. Gibson, M. Holland
and J. Zelenka. RAIDframe: Rapid Prototyping for
Disk Arrays. In Proceedings of the 1996 ACM SIG-
METRICS international Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS '96),
Vol. 24 No. 1, pages 268-269, May 1996.

[27]. The randread pkg.
http://pkgsrc.se/benchmarks/randread

[28]. SPC Web Search Engine I/O Trace.
http://traces.cs.umass.edu/storage/

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association290

